Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35849818

RESUMO

Automated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both research and real-world settings. However, most existing benchmarking datasets for biomedical RE only focus on relations of a single type (e.g. protein-protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this work, we first review commonly used named entity recognition (NER) and RE datasets. Then, we present a first-of-its-kind biomedical relation extraction dataset (BioRED) with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene-disease; chemical-chemical) at the document level, on a set of 600 PubMed abstracts. Furthermore, we label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including Bidirectional Encoder Representations from Transformers (BERT)-based models, on the NER and RE tasks. Our results show that while existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can successfully facilitate the development of more accurate, efficient and robust RE systems for biomedicine. Availability: The BioRED dataset and annotation guidelines are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.


Assuntos
Algoritmos , Mineração de Dados , Proteínas , PubMed
2.
PLoS Biol ; 19(12): e3001464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871295

RESUMO

The UniProt knowledgebase is a public database for protein sequence and function, covering the tree of life and over 220 million protein entries. Now, the whole community can use a new crowdsourcing annotation system to help scale up UniProt curation and receive proper attribution for their biocuration work.


Assuntos
Crowdsourcing/métodos , Curadoria de Dados/métodos , Anotação de Sequência Molecular/métodos , Sequência de Aminoácidos/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas/tendências , Humanos , Literatura , Proteínas/metabolismo , Participação dos Interessados
3.
Nucleic Acids Res ; 46(D1): D542-D550, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29145615

RESUMO

Protein post-translational modifications (PTMs) play a pivotal role in numerous biological processes by modulating regulation of protein function. We have developed iPTMnet (http://proteininformationresource.org/iPTMnet) for PTM knowledge discovery, employing an integrative bioinformatics approach-combining text mining, data mining, and ontological representation to capture rich PTM information, including PTM enzyme-substrate-site relationships, PTM-specific protein-protein interactions (PPIs) and PTM conservation across species. iPTMnet encompasses data from (i) our PTM-focused text mining tools, RLIMS-P and eFIP, which extract phosphorylation information from full-scale mining of PubMed abstracts and full-length articles; (ii) a set of curated databases with experimentally observed PTMs; and iii) Protein Ontology that organizes proteins and PTM proteoforms, enabling their representation, annotation and comparison within and across species. Presently covering eight major PTM types (phosphorylation, ubiquitination, acetylation, methylation, glycosylation, S-nitrosylation, sumoylation and myristoylation), iPTMnet knowledgebase contains more than 654 500 unique PTM sites in over 62 100 proteins, along with more than 1200 PTM enzymes and over 24 300 PTM enzyme-substrate-site relations. The website supports online search, browsing, retrieval and visual analysis for scientific queries. Several examples, including functional interpretation of phosphoproteomic data, demonstrate iPTMnet as a gateway for visual exploration and systematic analysis of PTM networks and conservation, thereby enabling PTM discovery and hypothesis generation.


Assuntos
Bases de Dados de Proteínas , Bases de Conhecimento , Processamento de Proteína Pós-Traducional , Animais , Biologia Computacional , Mineração de Dados , Enzimas/metabolismo , Humanos , Internet , Fosforilação , Mapas de Interação de Proteínas , Alinhamento de Sequência
4.
Nucleic Acids Res ; 45(D1): D339-D346, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899649

RESUMO

The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas , Animais , Humanos , Proteínas/química , Proteínas/genética , Navegador
5.
Bioinformatics ; 33(21): 3454-3460, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036270

RESUMO

MOTIVATION: Biological knowledgebases, such as UniProtKB/Swiss-Prot, constitute an essential component of daily scientific research by offering distilled, summarized and computable knowledge extracted from the literature by expert curators. While knowledgebases play an increasingly important role in the scientific community, their ability to keep up with the growth of biomedical literature is under scrutiny. Using UniProtKB/Swiss-Prot as a case study, we address this concern via multiple literature triage approaches. RESULTS: With the assistance of the PubTator text-mining tool, we tagged more than 10 000 articles to assess the ratio of papers relevant for curation. We first show that curators read and evaluate many more papers than they curate, and that measuring the number of curated publications is insufficient to provide a complete picture as demonstrated by the fact that 8000-10 000 papers are curated in UniProt each year while curators evaluate 50 000-70 000 papers per year. We show that 90% of the papers in PubMed are out of the scope of UniProt, that a maximum of 2-3% of the papers indexed in PubMed each year are relevant for UniProt curation, and that, despite appearances, expert curation in UniProt is scalable. AVAILABILITY AND IMPLEMENTATION: UniProt is freely available at http://www.uniprot.org/. CONTACT: sylvain.poux@sib.swiss. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Curadoria de Dados , Bases de Dados de Proteínas , Curadoria de Dados/estatística & dados numéricos , Mineração de Dados , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Bases de Conhecimento , PubMed/estatística & dados numéricos , Literatura de Revisão como Assunto , Estatística como Assunto
6.
PLoS Comput Biol ; 11(9): e1004391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407127

RESUMO

MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Genes/genética , MicroRNAs/genética , Bases de Dados Genéticas , Humanos , MicroRNAs/classificação , Modelos Genéticos , Publicações Periódicas como Assunto
7.
Nucleic Acids Res ; 42(Database issue): D415-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270789

RESUMO

The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PRO's organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PRO's representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments.


Assuntos
Ontologias Biológicas , Bases de Dados de Proteínas , Proteínas/classificação , Animais , Humanos , Internet , Camundongos , Proteínas/química
8.
Nucleic Acids Res ; 39(Database issue): D539-45, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20935045

RESUMO

The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of protein research. PRO (http://pir.georgetown.edu/pro) is part of the Open Biomedical Ontology Foundry.


Assuntos
Bases de Dados de Proteínas , Proteínas/classificação , Animais , Proteínas de Escherichia coli/química , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Proteínas/química , Proteínas/genética , Interface Usuário-Computador , Vocabulário Controlado
9.
Database (Oxford) ; 20222022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197453

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has compelled biomedical researchers to communicate data in real time to establish more effective medical treatments and public health policies. Nontraditional sources such as preprint publications, i.e. articles not yet validated by peer review, have become crucial hubs for the dissemination of scientific results. Natural language processing (NLP) systems have been recently developed to extract and organize COVID-19 data in reasoning systems. Given this scenario, the BioCreative COVID-19 text mining tool interactive demonstration track was created to assess the landscape of the available tools and to gauge user interest, thereby providing a two-way communication channel between NLP system developers and potential end users. The goal was to inform system designers about the performance and usability of their products and to suggest new additional features. Considering the exploratory nature of this track, the call for participation solicited teams to apply for the track, based on their system's ability to perform COVID-19-related tasks and interest in receiving user feedback. We also recruited volunteer users to test systems. Seven teams registered systems for the track, and >30 individuals volunteered as test users; these volunteer users covered a broad range of specialties, including bench scientists, bioinformaticians and biocurators. The users, who had the option to participate anonymously, were provided with written and video documentation to familiarize themselves with the NLP tools and completed a survey to record their evaluation. Additional feedback was also provided by NLP system developers. The track was well received as shown by the overall positive feedback from the participating teams and the users. Database URL: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-4/.


Assuntos
COVID-19 , COVID-19/epidemiologia , Mineração de Dados/métodos , Bases de Dados Factuais , Documentação , Humanos , Processamento de Linguagem Natural
10.
BMC Bioinformatics ; 12 Suppl 8: S1, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22151647

RESUMO

BACKGROUND: The overall goal of the BioCreative Workshops is to promote the development of text mining and text processing tools which are useful to the communities of researchers and database curators in the biological sciences. To this end BioCreative I was held in 2004, BioCreative II in 2007, and BioCreative II.5 in 2009. Each of these workshops involved humanly annotated test data for several basic tasks in text mining applied to the biomedical literature. Participants in the workshops were invited to compete in the tasks by constructing software systems to perform the tasks automatically and were given scores based on their performance. The results of these workshops have benefited the community in several ways. They have 1) provided evidence for the most effective methods currently available to solve specific problems; 2) revealed the current state of the art for performance on those problems; 3) and provided gold standard data and results on that data by which future advances can be gauged. This special issue contains overview papers for the three tasks of BioCreative III. RESULTS: The BioCreative III Workshop was held in September of 2010 and continued the tradition of a challenge evaluation on several tasks judged basic to effective text mining in biology, including a gene normalization (GN) task and two protein-protein interaction (PPI) tasks. In total the Workshop involved the work of twenty-three teams. Thirteen teams participated in the GN task which required the assignment of EntrezGene IDs to all named genes in full text papers without any species information being provided to a system. Ten teams participated in the PPI article classification task (ACT) requiring a system to classify and rank a PubMed® record as belonging to an article either having or not having "PPI relevant" information. Eight teams participated in the PPI interaction method task (IMT) where systems were given full text documents and were required to extract the experimental methods used to establish PPIs and a text segment supporting each such method. Gold standard data was compiled for each of these tasks and participants competed in developing systems to perform the tasks automatically.BioCreative III also introduced a new interactive task (IAT), run as a demonstration task. The goal was to develop an interactive system to facilitate a user's annotation of the unique database identifiers for all the genes appearing in an article. This task included ranking genes by importance (based preferably on the amount of described experimental information regarding genes). There was also an optional task to assist the user in finding the most relevant articles about a given gene. For BioCreative III, a user advisory group (UAG) was assembled and played an important role 1) in producing some of the gold standard annotations for the GN task, 2) in critiquing IAT systems, and 3) in providing guidance for a future more rigorous evaluation of IAT systems. Six teams participated in the IAT demonstration task and received feedback on their systems from the UAG group. Besides innovations in the GN and PPI tasks making them more realistic and practical and the introduction of the IAT task, discussions were begun on community data standards to promote interoperability and on user requirements and evaluation metrics to address utility and usability of systems. CONCLUSIONS: In this paper we give a brief history of the BioCreative Workshops and how they relate to other text mining competitions in biology. This is followed by a synopsis of the three tasks GN, PPI, and IAT in BioCreative III with figures for best participant performance on the GN and PPI tasks. These results are discussed and compared with results from previous BioCreative Workshops and we conclude that the best performing systems for GN, PPI-ACT and PPI-IMT in realistic settings are not sufficient for fully automatic use. This provides evidence for the importance of interactive systems and we present our vision of how best to construct an interactive system for a GN or PPI like task in the remainder of the paper.


Assuntos
Biologia Computacional/métodos , Mineração de Dados , Genes , Proteínas/metabolismo , Software , Animais , Biologia Computacional/normas , Humanos , Publicações Periódicas como Assunto , Proteínas/genética
11.
BMC Bioinformatics ; 12 Suppl 8: S4, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22151968

RESUMO

BACKGROUND: The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. RESULTS: A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. DISCUSSION: The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge.


Assuntos
Mineração de Dados/métodos , Genes , Animais , Biologia Computacional/métodos , Publicações Periódicas como Assunto , Plantas/genética , Plantas/metabolismo
12.
Database (Oxford) ; 20212021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048547

RESUMO

microRNAs (miRNAs) are essential gene regulators, and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications and developing new hypotheses built on previous knowledge. Here, we present extracting miRNA Information from Text (emiRIT), a text-miningbased resource, which presents miRNA information mined from the literature through a user-friendly interface. We collected 149 ,233 miRNA -PubMed ID pairs from Medline between January 1997 and May 2020. emiRIT currently contains 'miRNA -gene regulation' (69 ,152 relations), 'miRNA disease (cancer)' (12 ,300 relations), 'miRNA -biological process and pathways' (23, 390 relations) and circulatory 'miRNAs in extracellular locations' (3782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text-mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively. We provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource's information coverage, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of cancer and a third case study to assess the usage of emiRIT in the curation of miRNA information. Database URL: https://research.bioinformatics.udel.edu/emirit/.


Assuntos
Mineração de Dados , MicroRNAs , Bases de Dados Factuais , MEDLINE , MicroRNAs/genética , PubMed
13.
Sci Data ; 7(1): 337, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046717

RESUMO

The Protein Ontology (PRO) provides an ontological representation of protein-related entities, ranging from protein families to proteoforms to complexes. Protein Ontology Linked Open Data (LOD) exposes, shares, and connects knowledge about protein-related entities on the Semantic Web using Resource Description Framework (RDF), thus enabling integration with other Linked Open Data for biological knowledge discovery. For example, proteins (or variants thereof) can be retrieved on the basis of specific disease associations. As a community resource, we strive to follow the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, disseminate regular updates of our data, support multiple methods for accessing, querying and downloading data in various formats, and provide documentation both for scientists and programmers. PRO Linked Open Data can be browsed via faceted browser interface and queried using SPARQL via YASGUI. RDF data dumps are also available for download. Additionally, we developed RESTful APIs to support programmatic data access. We also provide W3C HCLS specification compliant metadata description for our data. The PRO Linked Open Data is available at https://lod.proconsortium.org/ .


Assuntos
Descoberta do Conhecimento , Proteínas/química , Web Semântica , Conjuntos de Dados como Assunto , Software
14.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367111

RESUMO

In the UniProt Knowledgebase (UniProtKB), publications providing evidence for a specific protein annotation entry are organized across different categories, such as function, interaction and expression, based on the type of data they contain. To provide a systematic way of categorizing computationally mapped bibliographies in UniProt, we investigate a convolutional neural network (CNN) model to classify publications with accession annotations according to UniProtKB categories. The main challenge of categorizing publications at the accession annotation level is that the same publication can be annotated with multiple proteins and thus be associated with different category sets according to the evidence provided for the protein. We propose a model that divides the document into parts containing and not containing evidence for the protein annotation. Then, we use these parts to create different feature sets for each accession and feed them to separate layers of the network. The CNN model achieved a micro F1-score of 0.72 and a macro F1-score of 0.62, outperforming baseline models based on logistic regression and support vector machine by up to 22 and 18 percentage points, respectively. We believe that such an approach could be used to systematically categorize the computationally mapped bibliography in UniProtKB, which represents a significant set of the publications, and help curators to decide whether a publication is relevant for further curation for a protein accession. Database URL: https://goldorak.hesge.ch/bioexpclass/upclass/.


Assuntos
Aprendizado Profundo , Bases de Dados de Proteínas , Bases de Conhecimento , Anotação de Sequência Molecular , Proteínas/genética
15.
J Alzheimers Dis ; 77(1): 257-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716361

RESUMO

BACKGROUND: The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE: To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS: We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS: Data from 954 papers have been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 745 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION: This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers.


Assuntos
Doença de Alzheimer/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Sistemas Inteligentes , Mapas de Interação de Proteínas/genética , Setor Público , Doença de Alzheimer/diagnóstico , Humanos
16.
BMC Bioinformatics ; 10 Suppl 5: S3, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19426460

RESUMO

BACKGROUND: The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. RESULTS: PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. CONCLUSION: PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Fator de Crescimento Transformador beta/química , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator de Crescimento Transformador beta/classificação , Interface Usuário-Computador
17.
BMC Bioinformatics ; 10: 70, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19243617

RESUMO

BACKGROUND: Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. RESULTS: To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. CONCLUSION: This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org.


Assuntos
Biologia Computacional/métodos , Células Dendríticas/classificação , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Terminologia como Assunto , Vocabulário Controlado
18.
J Cell Biol ; 165(1): 123-33, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15078903

RESUMO

The cation-independent mannose 6-phosphate receptor (CI-MPR) mediates sorting of lysosomal hydrolase precursors from the TGN to endosomes. After releasing the hydrolase precursors into the endosomal lumen, the unoccupied receptor returns to the TGN for further rounds of sorting. Here, we show that the mammalian retromer complex participates in this retrieval pathway. The hVps35 subunit of retromer interacts with the cytosolic domain of the CI-MPR. This interaction probably occurs in an endosomal compartment, where most of the retromer is localized. In particular, retromer is associated with tubular-vesicular profiles that emanate from early endosomes or from intermediates in the maturation from early to late endosomes. Depletion of retromer by RNA interference increases the lysosomal turnover of the CI-MPR, decreases cellular levels of lysosomal hydrolases, and causes swelling of lysosomes. These observations indicate that retromer prevents the delivery of the CI-MPR to lysosomes, probably by sequestration into endosome-derived tubules from where the receptor returns to the TGN.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas de Transporte Vesicular , Rede trans-Golgi/metabolismo , Animais , Proteínas de Transporte/genética , Compartimento Celular/genética , Regulação para Baixo/genética , Endossomos/ultraestrutura , Células HeLa , Humanos , Hidrolases/metabolismo , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Interferência de RNA , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Rede trans-Golgi/ultraestrutura
19.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30805646

RESUMO

Methods focused on predicting 'global' annotations for proteins (such as molecular function, biological process and presence of domains or membership in a family) have reached a relatively mature stage. Methods to provide fine-grained 'local' annotation of functional sites (at the level of individual amino acid) are now coming to the forefront, especially in light of the rapid accumulation of genetic variant data. We have developed a computational method and workflow that predicts functional sites within proteins using position-specific conditional template annotation rules (namely PIR Site Rules or PIRSRs for short). Such rules are curated through review of known protein structural and other experimental data by structural biologists and are used to generate high-quality annotations for the UniProt Knowledgebase (UniProtKB) unreviewed section. To share the PIRSR functional site prediction method with the broader scientific community, we have streamlined our workflow and developed a stand-alone Java software package named PIRSitePredict. We demonstrate the use of PIRSitePredict for functional annotation of de novo assembled genome/transcriptome by annotating uncharacterized proteins from Trinity RNA-seq assembly of embryonic transcriptomes of the following three cartilaginous fishes: Leucoraja erinacea (Little Skate), Scyliorhinus canicula (Small-spotted Catshark) and Callorhinchus milii (Elephant Shark). On average about 1200 lines of annotations were predicted for each species.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Peixes/embriologia , Peixes/genética , Genoma , Software , Transcriptoma/genética
20.
BMC Bioinformatics ; 8 Suppl 9: S1, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18047702

RESUMO

Biomedical ontologies are emerging as critical tools in genomic and proteomic research, where complex data in disparate resources need to be integrated. A number of ontologies describe properties that can be attributed to proteins. For example, protein functions are described by the Gene Ontology (GO) and human diseases by SNOMED CT or ICD10. There is, however, a gap in the current set of ontologies - one that describes the protein entities themselves and their relationships. We have designed the PRotein Ontology (PRO) to facilitate protein annotation and to guide new experiments. The components of PRO extend from the classification of proteins on the basis of evolutionary relationships to the representation of the multiple protein forms of a gene (products generated by genetic variation, alternative splicing, proteolytic cleavage, and other post-translational modifications). PRO will allow the specification of relationships between PRO, GO and other ontologies in the OBO Foundry. Here we describe the initial development of PRO, illustrated using human and mouse proteins involved in the transforming growth factor-beta and bone morphogenetic protein signaling pathways.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Evolução Molecular , Armazenamento e Recuperação da Informação/métodos , Proteínas , Análise de Sequência/métodos , Interface Usuário-Computador , Proteínas/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA