Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Diagn ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068989

RESUMO

Gene expression analysis is pivotal in cancer research and clinical practice. Although traditional methods lack spatial context, RNA in situ hybridization (RNA-ISH) is a powerful technique that retains spatial tissue information. Here, RNAscope score, RT-droplet digital PCR, and automated QuantISH and QuPath were used for quantifying RNA-ISH expression values from formalin-fixed, paraffin-embedded samples. The methods were compared using high-grade serous ovarian carcinoma samples, focusing on CCNE1, WFDC2, and PPIB genes. The findings demonstrate good concordance between automated methods and RNAscope, with RT-droplet digital PCR showing less concordance. Additionally, QuantISH exhibits robust performance, even for low-expressed genes like CCNE1, showcasing its modular design and enhancing accessibility as a viable alternative for gene expression analysis.

2.
J Pathol Inform ; 14: 100339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915837

RESUMO

Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.

3.
Cancer Cell ; 41(6): 1103-1117.e12, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37207655

RESUMO

Ovarian high-grade serous carcinoma (HGSC) is typically diagnosed at an advanced stage, with multiple genetically heterogeneous clones existing in the tumors long before therapeutic intervention. Herein we integrate clonal composition and topology using whole-genome sequencing data from 510 samples of 148 patients with HGSC in the prospective, longitudinal, multiregion DECIDER study. Our results reveal three evolutionary states, which have distinct features in genomics, pathways, and morphological phenotypes, and significant association with treatment response. Nested pathway analysis suggests two evolutionary trajectories between the states. Experiments with five tumor organoids and three PI3K inhibitors support targeting tumors with enriched PI3K/AKT pathway with alpelisib. Heterogeneity analysis of samples from multiple anatomical sites shows that site-of-origin samples have 70% more unique clones than metastatic tumors or ascites. In conclusion, these analysis and visualization methods enable integrative tumor evolution analysis to identify patient subtypes using data from longitudinal, multiregion cohorts.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Estudos Prospectivos , Cistadenocarcinoma Seroso/metabolismo , Neoplasias das Tubas Uterinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA