Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(10): 1711-1722, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514215

RESUMO

Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses. Here, we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild-type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct neuronal ceroid lipofuscinosis disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared with controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Lipofuscinoses Ceroides Neuronais/genética , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia , Proteínas de Membrana Lisossomal , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Processamento de Proteína Pós-Traducional , Transporte Proteico/genética , Proteínas/genética , Serina-Treonina Quinases TOR/genética
2.
Mol Genet Metab ; 126(2): 196-205, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30301600

RESUMO

Mutations in the CLN7/MFSD8 gene encoding the lysosomal membrane protein CLN7 are causative of CLN7 disease, an inherited neurodegenerative disorder that typically affects children. To gain insight into the pathomechanisms of CLN7 disease, we established an immortalized cell line based on cerebellar (Cb) granule neuron precursors isolated from Cln7-/- mice. Here, we demonstrate that Cln7-deficient neuron-derived Cb cells display an abnormal phenotype that includes increased size and defective outward movement of late endosomes and lysosomes as well as impaired lysosomal exocytosis. Whereas Cln7-/- Cb cells appeared to be autophagy-competent, loss of Cln7 resulted in enhanced cell death under prolonged nutrient deprivation. Furthermore, reduced cell survival of Cln7-deficient cells was accompanied by a significantly impaired protein kinase B/Akt phosphorylation at Ser473 during long-term starvation. In summary, our data demonstrate for the first time that the putative lysosomal transporter CLN7 is relevant for lysosome motility and plays an important role for neuronal cell survival under conditions of starvation.


Assuntos
Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/patologia , Animais , Autofagia , Transporte Biológico , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Exocitose , Camundongos , Camundongos Knockout , Naftiridinas/farmacologia , Neurônios/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA