Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842535

RESUMO

Herein we combine the well-known processing advantages conferred by polymerization-induced self-assembly (PISA) with crystallization-driven self-assembly (CDSA) to achieve the efficient synthesis of hydrolytically degradable, highly anisotropic block copolymer nano-objects directly in aqueous solution at 30% w/w solids. This new strategy involves a so-called reverse sequence PISA protocol that employs poly(l-lactide) (PLLA) as the crystallizable core-forming block and poly(N,N'-dimethylacrylamide) (PDMAC) as the water-soluble non-ionic coronal block. Such syntheses result in PDMAC-rich anisotropic nanoparticles. Depending on the target diblock copolymer composition, either rod-like nanoparticles or diamond-like platelets can be obtained. Furthermore, N-Acryloylmorpholine is briefly evaluated as an alternative hydrophilic vinyl monomer to DMAC. Given that the PLLA block can undergo either hydrolytic or enzymatic degradation, such nanoparticles are expected to offer potential applications in various fields, including next-generation sustainable Pickering emulsifiers.

2.
J Am Chem Soc ; 146(30): 20802-20813, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018427

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C). The molten oil obtained on heating this eutectic composition to 90 °C in aqueous solution is homogenized in the presence of a water-soluble polymeric emulsifier. On cooling to 20 °C, polydisperse spherical phenanthrene/pyrene hybrid microparticles are obtained. Varying the stirring rate and emulsifier type enables the mean microparticle diameter to be adjusted from 11 to 279 µm. Importantly, the phenanthrene content of individual microparticles remains constant during processing, as expected for the eutectic composition. These new hybrid microparticles form impact craters and undergo partial fragmentation when fired into a metal target at 1 km s-1 using a light gas gun. When fired into an aerogel target at the same speed, microparticles are located at the ends of characteristic "carrot tracks". Autofluorescence is observed in both types of experiments, which at first sight suggests minimal degradation. However, Raman microscopy analysis of the aerogel-captured microparticles indicates prominent pyrene signals but no trace of the more volatile phenanthrene component. Such differential ablation during aerogel capture is expected to inform the in situ analysis of PAH-rich cosmic dust in future space missions.

3.
Langmuir ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316052

RESUMO

A poly(glycerol monomethacrylate) (PGMA) precursor was chain-extended with 2,2,2-trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization. Transmission electron microscopy (TEM) studies confirmed the formation of well-defined PGMA52-PTFEMA50 spherical nanoparticles, while dynamic light scattering (DLS) studies indicated a z-average diameter of 26 ± 6 nm. These sterically stabilized diblock copolymer nanoparticles were used as emulsifiers to prepare oil-in-water Pickering nanoemulsions: either n-dodecane or squalane was added to an aqueous dispersion of nanoparticles, followed by high-shear homogenization and high-pressure microfluidization. The Pickering nature of such nanoemulsion droplets was confirmed via cryo-transmission electron microscopy (cryo-TEM). The long-term stability of such Pickering nanoemulsions was evaluated by analytical centrifugation over a four-week period. The n-dodecane droplets grew in size significantly faster than squalane droplets: this is attributed to the higher aqueous solubility of the former oil, which promotes Ostwald ripening. The effect of adding various amounts of squalane to the n-dodecane droplet phase prior to emulsification was also explored. The addition of up to 40% (v/v) squalane led to more stable nanoemulsions, as judged by analytical centrifugation. The nanoparticle adsorption efficiency at the n-dodecane-water interface was assessed by gel permeation chromatography when using nanoparticle concentrations of 4.0, 7.0, or 10% w/w. Increasing the nanoparticle concentration not only produced smaller droplets but also reduced the adsorption efficiency, as confirmed by TEM studies. Furthermore, the effect of varying the nanoparticle concentration (2.5, 5.0, or 10% w/w) on the long-term stability of n-dodecane-in-water Pickering nanoemulsions was explored over a four-week period. Nanoemulsions prepared at higher nanoparticle concentrations were more unstable and exhibited a faster rate of Ostwald ripening. The nanoparticle adsorption efficiency was monitored for an aging nanoemulsion prepared at a copolymer concentration of 2.5% w/w. As the droplets ripened over time, the adsorption efficiency remained constant (∼97%). This suggests that nanoparticles desorbed from the shrinking smaller droplets and then readsorbed onto larger droplets over time. Finally, the effect of temperature on the stability of Pickering nanoemulsions was examined. Storing these Pickering nanoemulsions at elevated temperatures led to faster rates of Ostwald ripening, as expected.

4.
Langmuir ; 40(27): 14086-14098, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934738

RESUMO

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.


Assuntos
Aldeídos , Peroxidase do Rábano Silvestre , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Aldeídos/química , Polímeros/química , Adsorção , Propriedades de Superfície , Enzimas Imobilizadas/química
5.
Langmuir ; 40(28): 14527-14539, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954522

RESUMO

X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.

6.
Langmuir ; 40(1): 734-743, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128476

RESUMO

A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 µm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.

7.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320303

RESUMO

Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.

8.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696732

RESUMO

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Assuntos
Arginina , Nanopartículas , Nanopartículas/química , Adsorção , Arginina/química , Concentração de Íons de Hidrogênio , Polimerização , Dióxido de Silício/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
9.
Angew Chem Int Ed Engl ; 63(2): e202312119, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37996999

RESUMO

The kinetics of heterogeneous polymerization is determined directly using small-angle X-ray scattering (SAXS). This important advancement is exemplified for the synthesis of sterically-stabilized diblock copolymer nanoparticles by reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) in mineral oil at 90 °C. The principle of mass balance is invoked to derive a series of equations for the analysis of the resulting time-resolved SAXS patterns. Importantly, there is a continuous change in the X-ray scattering length density for the various components within the reaction mixture. This enables the volume fraction of unreacted BzMA monomer to be calculated at any given time point, which enables the polymerization kinetics to be monitored in situ directly without relying on supplementary characterization techniques. Moreover, SAXS enables the local concentration of both monomer and solvent within the growing swollen nanoparticles to be determined during the polymerization. Data analysis reveals that the instantaneous rate of BzMA polymerization is proportional to the local monomer concentration within the nanoparticles. In principle, this powerful new time-resolved SAXS approach can be applicable to other heterogeneous polymerization formulations.

10.
Langmuir ; 39(21): 7361-7370, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37186666

RESUMO

We report the first example of a non-aqueous Pickering nanoemulsion, which comprises glycerol droplets dispersed in mineral oil. The droplet phase is stabilized by hydrophobic sterically stabilized poly(lauryl methacrylate)-poly(benzyl methacrylate) nanoparticles which are prepared directly in mineral oil using polymerization-induced self-assembly. First, a glycerol-in-mineral oil Pickering macroemulsion with a mean droplet diameter of 2.1 ± 0.9 µm is prepared via high-shear homogenization using excess nanoparticles as an emulsifier. Then, this precursor macroemulsion is subjected to high-pressure microfluidization (a single pass at an applied pressure of 20,000 psi) to produce glycerol droplets of approximately 200-250 nm diameter. Transmission electron microscopy studies indicate preservation of the distinctive superstructure produced by nanoparticle adsorption at the glycerol/mineral oil interface, thus confirming the Pickering nature of the nanoemulsion. Glycerol is sparingly soluble in mineral oil, thus such nanoemulsions are rather susceptible to destabilization via Ostwald ripening. Indeed, substantial droplet growth occurs within 24 h at 20 °C, as judged by dynamic light scattering. However, this problem can be suppressed by dissolving a non-volatile solute (sodium iodide) in glycerol prior to formation of the nanoemulsion. This reduces diffusional loss of glycerol molecules from the droplets, with analytical centrifugation studies indicating much better long-term stability for such Pickering nanoemulsions (up to 21 weeks). Finally, the addition of just 5% water to the glycerol phase prior to emulsification enables the refractive index of the droplet phase to be matched to that of the continuous phase, leading to relatively transparent nanoemulsions.

11.
Biomacromolecules ; 24(9): 4285-4302, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616242

RESUMO

RAFT solution polymerization is used to polymerize 2-hydroxypropyl methacrylate (HPMA). The resulting PHPMA precursor is then chain-extended using N,N'-dimethylacrylamide (DMAC) to produce a series of thermoresponsive PHPMA-PDMAC diblock copolymers. Such amphiphilic copolymers can be directly dispersed in ice-cold water and self-assembled at 20 °C to form spheres, worms, or vesicles depending on their copolymer composition. Construction of a pseudo-phase diagram is required to identify the pure worm phase, which corresponds to a rather narrow range of PDMAC DPs. Such worms form soft, free-standing gels in aqueous solution at around ambient temperature. Rheology studies confirm the thermoresponsive nature of such worms, which undergo a reversible worm-to-sphere on cooling below ambient temperature. This morphological transition leads to in situ degelation, and variable temperature 1H NMR studies indicate a higher degree of (partial) hydration for the weakly hydrophobic PHPMA chains at lower temperatures. The trithiocarbonate end-group located at the end of each PDMAC chain can be removed by treatment with excess hydrazine. The resulting terminal secondary thiol group can form disulfide bonds via coupling, which produces PHPMA-PDMAC-PHPMA triblock copolymer chains. Alternatively, this reactive thiol group can be used for conjugation reactions. A PHPMA141-PDMAC36 worm gel was used to store human mesenchymal stem cells (MSCs) for up to three weeks at 37 °C. MSCs retrieved from this gel subsequently underwent proliferation and maintained their ability to differentiate into osteoblastic cells.


Assuntos
Temperatura Baixa , Células-Tronco Mesenquimais , Humanos , Polimerização , Géis , Transição de Fase , Poli A , Polímeros
12.
Macromol Rapid Commun ; 44(16): e2200903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36534428

RESUMO

RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.


Assuntos
Histidina , Nanopartículas , Histidina/química , Aço Inoxidável , Adsorção , Polímeros/química , Nanopartículas/química
13.
Angew Chem Int Ed Engl ; 62(42): e202308372, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37409380

RESUMO

It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.

14.
Angew Chem Int Ed Engl ; 62(38): e202309526, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37522648

RESUMO

Hydrolytically degradable block copolymer nanoparticles are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous media. This efficient protocol involves the reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethylacrylamide (DMAC) using a monofunctional or bifunctional trithiocarbonate-capped poly(ϵ-caprolactone) (PCL) precursor. DMAC monomer is employed as a co-solvent to solubilize the hydrophobic PCL chains. At an intermediate DMAC conversion of 20-60 %, the reaction mixture is diluted with water to 10-25 % w/w solids. The growing amphiphilic block copolymer chains undergo nucleation to form sterically-stabilized PCL-core nanoparticles with PDMAC coronas. 1 H NMR studies confirm more than 99 % DMAC conversion while gel permeation chromatography (GPC) studies indicate well-controlled RAFT polymerizations (Mw /Mn ≤1.30). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicate spheres of 20-120 nm diameter. As expected, hydrolytic degradation occurs within days at 37 °C in either acidic or alkaline solution. Degradation is also observed in phosphate-buffered saline (PBS) (pH 7.4) at 37 °C. However, no degradation is detected over a three-month period when these nanoparticles are stored at 20 °C in deionized water (pH 6.7). Finally, PDMAC30 -PCL16 -PDMAC30 nanoparticles are briefly evaluated as a dispersant for an agrochemical formulation based on a broad-spectrum fungicide (azoxystrobin).

15.
Angew Chem Int Ed Engl ; 62(19): e202300031, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36895104

RESUMO

Biominerals can exhibit exceptional mechanical properties owing to their hierarchically-ordered organic/inorganic nanocomposite structure. However, synthetic routes to oriented artificial biominerals of comparable complexity remain a formidable technical challenge. Herein we design a series of soft, deformable nanogels that are employed as particulate additives to prepare nanogel@calcite nanocomposite crystals. Remarkably, such nanogels undergo a significant morphological change-from spherical to pseudo-hemispherical-depending on their degree of cross-linking. This deformation occurs normal to the growth direction of the (104) face of the calcite and the underlying occlusion mechanism is revealed by in situ atomic force microscopy studies. This model system provides new mechanistic insights regarding the formation of oriented structures during biomineralization and offers new avenues for the design of synthetic nanocomposites comprising aligned anisotropic nanoparticles.

16.
Angew Chem Int Ed Engl ; 62(10): e202218397, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651475

RESUMO

Epoxy-functional sterically-stabilized diblock copolymer nanoparticles (ca. 27 nm) are prepared via RAFT dispersion polymerization in mineral oil. Nanoparticle adsorption onto stainless steel is examined using a quartz crystal microbalance. Incorporating epoxy groups within the steric stabilizer chains results in a two-fold increase in the adsorbed amount, Γ, at 20 °C (7.6 mg m-2 ) compared to epoxy-core functional nanoparticles (3.7 mg m-2 ) or non-functional nanoparticles (3.8 mg m-2 ). A larger difference in Γ is observed at 40 °C; this suggests chemical adsorption of the nanoparticles rather than merely physical adsorption. A remarkable near five-fold increase in Γ is observed for ca. 50 nm epoxy-functional nanoparticles compared to non-functional nanoparticles (31.3 vs. 6.4 mg m-2 , respectively). Tribological studies confirm that chemical adsorption of the latter epoxy-functional nanoparticles leads to a significant reduction in friction between 60 °C and 120 °C.

17.
Langmuir ; 38(26): 8021-8029, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737742

RESUMO

A poly(N,N'-dimethylacrylamide) (PDMAC) precursor is chain-extended via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of diacetone acrylamide (PDAAM) to produce PDMAC77-PDAAM40 spherical nanoparticles. Post-polymerization core-crosslinking of such nanoparticles was performed at 20 °C, and the resulting covalently stabilized nanoparticles survive exposure to methanol. The linear and core-crosslinked nanoparticles were subjected to high-shear homogenization in turn in the presence of n-dodecane to form macroemulsions. Subsequent processing of these macroemulsions via high-pressure microfluidization produced nanoemulsions. When using the core crosslinked nanoparticles, the droplet diameter was strongly dependent on the copolymer concentration. This indicates that such nanoparticles remain intact under the processing conditions, leading to formation of genuine Pickering nanoemulsions with a z-average diameter of 244 ± 60 nm. In contrast, the linear nanoparticles undergo disassembly to afford molecularly dissolved diblock copolymer chains, which stabilize oil droplets of 170 ± 59 nm diameter. The long-term stability of these two types of n-dodecane-in-water nanoemulsions with respect to Ostwald ripening was examined using analytical centrifugation. When prepared at the same copolymer concentration, Pickering nanoemulsions stabilized by core-crosslinked nanoparticles proved to be significantly more stable than the nanoemulsion stabilized by the amphiphilic PDMAC77-PDAAM40 chains. Moreover, higher copolymer concentrations led to a significantly faster rate of droplet growth. This is attributed to excess copolymer facilitating the diffusion of n-dodecane through the aqueous phase. Finally, analytical centrifugation is used to assess the long-term stability of the analogous squalane-in-water nanoemulsions. These systems are much more stable than the corresponding n-dodecane-in-water nanoemulsions, regardless of whether the copolymer is adsorbed as sterically stabilized nanoparticles or surface-active chains.

18.
Langmuir ; 38(9): 2885-2894, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192370

RESUMO

It is well known that sterically stabilized diblock copolymer nanoparticles can be readily prepared using polymerization-induced self-assembly. Recently, we reported that such nanoparticles can be employed as a dispersant to prepare micron-sized particles of a widely used fungicide (azoxystrobin) via ball milling. In the present study, we examine the effect of varying the nature of the steric stabilizer block, the mean nanoparticle diameter, and the glass transition temperature (Tg) of the core-forming block on the particle size and colloidal stability of such azoxystrobin microparticles. In addition, the effect of crosslinking the nanoparticle cores is also investigated. Laser diffraction studies indicated the formation of azoxystrobin microparticles of approximately 2 µm diameter after milling for between 15 and 30 min at 6000 rpm. Diblock copolymer nanoparticles comprising a non-ionic steric stabilizer, rather than a cationic or anionic steric stabilizer, were determined to be more effective dispersants. Furthermore, nanoparticles of up to 51 nm diameter enabled efficient milling and ensured overall suspension concentrate stability. Moreover, crosslinking the nanoparticle cores and adjusting the Tg of the core-forming block had little effect on the milling of azoxystrobin. Finally, we show that this versatile approach is also applicable to five other organic crystalline agrochemicals, namely pinoxaden, cyproconazole, difenoconazole, isopyrazam and tebuconazole. TEM studies confirmed the adsorption of sterically stabilized nanoparticles at the surface of such agrochemical microparticles. The nanoparticles are characterized using TEM, DLS, aqueous electrophoresis and 1H NMR spectroscopy, while the final aqueous' suspension concentrates comprising microparticles of the above six agrochemical actives are characterized using optical microscopy, laser diffraction and electron microscopy.


Assuntos
Agroquímicos , Nanopartículas , Nanopartículas/química , Tamanho da Partícula , Polimerização , Polímeros/química , Suspensões
19.
Biomacromolecules ; 23(3): 1423-1432, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35188757

RESUMO

Highly stretchable electrically conductive hydrogels have been extensively researched in recent years, especially for applications in strain and pressure sensing, electronic skin, and implantable bioelectronic devices. Herein, we present a new cross-linked complex coacervate approach to prepare conductive hydrogels that are both highly stretchable and compressive. The gels involve a complex coacervate between carboxylated nanogels and branched poly(ethylene imine), whereby the latter is covalently cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDGE). Inclusion of graphene nanoplatelets (Gnp) provides electrical conductivity as well as tensile and compressive strain-sensing capability to the hydrogels. We demonstrate that judicious selection of the molecular weight of the PEGDGE cross-linker enables the mechanical properties of these hydrogels to be tuned. Indeed, the gels prepared with a PEGDGE molecular weight of 6000 g/mol defy the general rule that toughness decreases as strength increases. The conductive hydrogels achieve a compressive strength of 25 MPa and a stretchability of up to 1500%. These new gels are both adhesive and conformal. They provide a self-healable electronic circuit, respond rapidly to human motion, and can act as strain-dependent sensors while exhibiting low cytotoxicity. Our new approach to conductive gel preparation is efficient, involves only preformed components, and is scalable.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Adesivos , Condutividade Elétrica , Humanos , Hidrogéis
20.
Soft Matter ; 18(35): 6757-6770, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040127

RESUMO

The RAFT aqueous emulsion polymerization of either methyl methacrylate (MMA) or benzyl methacrylate (BzMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a water-soluble precursor to produce sterically-stabilized diblock copolymer nanoparticles of approximately 30 nm diameter. Carboxylic acid- or morpholine-functional RAFT agents are employed to confer anionic or cationic functionality at the ends of the PGMA stabilizer chains, with a neutral RAFT agent being used as a control. Thus the electrophoretic footprint of such minimally-charged model nanoparticles can be adjusted simply by varying the solution pH. Giant (mm-sized) aqueous droplets containing such nanoparticles are then grown within a continuous phase of n-dodecane and a series of interfacial rheology measurements are conducted. The interfacial tension between the aqueous phase and n-dodecane is strongly dependent on the charge of the terminal group on the stabilizer chains. More specifically, neutral nanoparticles produce a significantly lower interfacial tension than either cationic or anionic nanoparticles. Moreover, adsorption of neutral nanoparticles at the n-dodecane-water interface produces higher interfacial elastic moduli than that observed for charged nanoparticles. This is because neutral nanoparticles can adsorb at much higher surface packing densities owing to the absence of electrostatic repulsive forces in this case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA