Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239412

RESUMO

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Assuntos
Receptor alfa de Estrogênio , Trofoblastos , Animais , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Fertilidade , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Progesterona/metabolismo , Receptores de Estrogênio/metabolismo , Trofoblastos/metabolismo
2.
Physiol Rev ; 97(3): 1045-1087, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539435

RESUMO

Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Transdução de Sinais , Animais , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Genótipo , Humanos , Camundongos Transgênicos , Fenótipo , Moduladores Seletivos de Receptor Estrogênico/farmacologia
3.
Arterioscler Thromb Vasc Biol ; 43(5): 684-696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924232

RESUMO

BACKGROUND: Adaptation of fat depots to change in fuel availability is critical for metabolic flexibility and cardiometabolic health. The mechanisms responsible for fat depot-specific lipid sensing and shuttling remain elusive. Adipose tissue microvascular endothelial cells (AT-EC) regulates bidirectional fatty acid fluxes depending on fed or fasted state. How AT-EC sense and adapt to metabolic changes according to AT location remains to be established. METHODS: We combined transcriptional analysis of native human AT-EC together with in vitro approaches in primary human AT-EC and in vivo and ex vivo studies of mice under fed and fasted conditions. RESULTS: Transcriptional large-scale analysis of human AT-EC isolated from gluteofemoral and abdominal subcutaneous AT revealed that the endothelium exhibits a fat depot-specific signature associated with lipid handling and Notch signaling enrichment. We uncovered a functional link between metabolic status and endothelial DLL4 (delta-like canonical notch ligand 4), which decreases with fasting. DLL4 regulates fatty acid uptake through nontranscriptional modulation of macropinocytosis-dependent long chain fatty acid uptake. Importantly, the changes in DLL4 expression, in response to energy transition state, is impaired under obesogenic conditions, an early alteration coinciding with a defect in systemic fatty acid fluxes adaptation and a resistance to weight loss. CONCLUSIONS: DLL4 is a major actor in the adaptive mechanisms of AT-EC to regulate lipid fluxes. It likely contributes to fat depot-dependent metabolism in response to energy transition states. AT-EC alteration with obesity may favor metabolic inflexibility and the development of cardiometabolic disorders.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Jejum , Endotélio/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Development ; 147(5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32098763

RESUMO

17ß-Estradiol induces the postnatal development of mammary gland and influences breast carcinogenesis by binding to the estrogen receptor ERα. ERα acts as a transcription factor but also elicits rapid signaling through a fraction of ERα expressed at the membrane. Here, we have used the C451A-ERα mouse model mutated for the palmitoylation site to understand how ERα membrane signaling affects mammary gland development. Although the overall structure of physiological mammary gland development is slightly affected, both epithelial fragments and basal cells isolated from C451A-ERα mammary glands failed to grow when engrafted into cleared wild-type fat pads, even in pregnant hosts. Similarly, basal cells purified from hormone-stimulated ovariectomized C451A-ERα mice did not produce normal outgrowths. Ex vivo, C451A-ERα basal cells displayed reduced matrix degradation capacities, suggesting altered migration properties. More importantly, C451A-ERα basal cells recovered in vivo repopulating ability when co-transplanted with wild-type luminal cells and specifically with ERα-positive luminal cells. Transcriptional profiling identified crucial paracrine luminal-to-basal signals. Altogether, our findings uncover an important role for membrane ERα expression in promoting intercellular communications that are essential for mammary gland development.


Assuntos
Epitélio/metabolismo , Receptor alfa de Estrogênio/biossíntese , Glândulas Mamárias Animais/embriologia , Comunicação Parácrina/fisiologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lipoilação/fisiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
5.
Gut ; 71(4): 807-821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903148

RESUMO

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo
6.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33012251

RESUMO

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Receptor alfa de Estrogênio/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Fatores de Tempo
7.
Cell Mol Life Sci ; 78(15): 5681-5705, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34156490

RESUMO

17ß-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear "genomic" or membrane "non-genomic" actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinogênese/metabolismo , Feminino , Humanos
8.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270003

RESUMO

Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1-/- (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1-/- and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.


Assuntos
Receptor alfa de Estrogênio , Artérias Mesentéricas , Envelhecimento/genética , Animais , Estradiol , Receptor alfa de Estrogênio/genética , Artérias Mesentéricas/fisiologia , Camundongos
9.
Am J Physiol Endocrinol Metab ; 320(1): E19-E29, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135461

RESUMO

Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR-/- mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR-/- mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment.NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.


Assuntos
Dieta Ocidental/efeitos adversos , Estetrol/uso terapêutico , Receptor alfa de Estrogênio/genética , Fígado/metabolismo , Obesidade/prevenção & controle , Placa Aterosclerótica/prevenção & controle , Tecido Adiposo/patologia , Animais , Estetrol/administração & dosagem , Feminino , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Ovariectomia , Placa Aterosclerótica/patologia , Receptores de LDL/genética
10.
J Vasc Res ; 58(1): 16-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33264773

RESUMO

Flow-mediated outward remodeling (FMR) is involved in postischemic revascularization. Angiotensin II type 2 receptor (AT2R), through activation of T-cell-mediated IL-17 production, and estrogens are involved in FMR. Thus, we investigated the interplay between estrogens and AT2R in FMR using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo. Arteries were collected after 2 (inflammatory phase), 4 (diameter expansion phase), and 7 days (remodeling completed). We used AT2R+/+ and AT2R-/- ovariectomized (OVX) female mice treated or not with 17-beta-estradiol (E2). Seven days after ligation, arterial diameter was larger in high flow (HF) compared to normal flow (NF) arteries. FMR was absent in OVX mice and restored by E2. AT2R gene expression was higher in HF than in NF arteries only in E2-treated OVX AT2R+/+ mice. CD11b and TNF alpha levels (inflammatory phase), MMP2 and TIMP1 (extracellular matrix digestion), and NOS3 (diameter expansion phase) expression levels were higher in HF than in NF arteries only in E2-treated AT2R+/+ mice, not in the other groups. Thus, E2 is necessary for AT2R-dependent diameter expansion, possibly through activation of T-cell AT2R, in arteries submitted chronically to high blood flow.


Assuntos
Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Mecanotransdução Celular , Artérias Mesentéricas/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Feminino , Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Receptor Tipo 2 de Angiotensina/genética , Fluxo Sanguíneo Regional , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640903

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
12.
Diabetologia ; 63(3): 453-461, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754750

RESUMO

Gender and biological sex impact the pathogenesis of numerous diseases, including metabolic disorders such as diabetes. In most parts of the world, diabetes is more prevalent in men than in women, especially in middle-aged populations. In line with this, considering almost all animal models, males are more likely to develop obesity, insulin resistance and hyperglycaemia than females in response to nutritional challenges. As summarised in this review, it is now obvious that many aspects of energy balance and glucose metabolism are regulated differently in males and females and influence their predisposition to type 2 diabetes. During their reproductive life, women exhibit specificities in energy partitioning as compared with men, with carbohydrate and lipid utilisation as fuel sources that favour energy storage in subcutaneous adipose tissues and preserve them from visceral and ectopic fat accumulation. Insulin sensitivity is higher in women, who are also characterised by higher capacities for insulin secretion and incretin responses than men; although, these sex advantages all disappear when glucose tolerance deteriorates towards diabetes. Clinical and experimental observations evidence the protective actions of endogenous oestrogens, mainly through oestrogen receptor α activation in various tissues, including the brain, the liver, skeletal muscle, adipose tissue and pancreatic beta cells. However, beside sex steroids, underlying mechanisms need to be further investigated, especially the role of sex chromosomes, fetal/neonatal programming and epigenetic modifications. On the path to precision medicine, further deciphering sex-specific traits in energy balance and glucose homeostasis is indeed a priority topic to optimise individual approaches in type 2 diabetes prevention and treatment.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Metabolismo Energético/fisiologia , Caracteres Sexuais , Animais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco
13.
Eur J Neurosci ; 52(1): 2627-2645, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31833601

RESUMO

Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.


Assuntos
Receptor alfa de Estrogênio , Diferenciação Sexual , Animais , Encéfalo/metabolismo , Calbindinas , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Camundongos , Gravidez , Área Pré-Óptica/metabolismo , Caracteres Sexuais
14.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375307

RESUMO

The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and ß, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.


Assuntos
Artérias/metabolismo , Vasos Linfáticos/metabolismo , Receptores de Estrogênio/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Animais , Artérias/patologia , Biomarcadores , Suscetibilidade a Doenças , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Vasos Linfáticos/patologia , Fatores Sexuais , Doenças Vasculares/patologia
15.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316608

RESUMO

Endometriosis is a frequent and chronic inflammatory disease with impacts on reproduction, health and quality of life. This disorder is highly estrogen-dependent and the purpose of hormonal treatments is to decrease the endogenous ovarian production of estrogens. High estrogen production is a consistently observed endocrine feature of endometriosis. mRNA and protein levels of estrogen receptors (ER) are different between a normal healthy endometrium and ectopic/eutopic endometrial lesions: endometriotic stromal cells express extraordinarily higher ERß and significantly lower ERα levels compared with endometrial stromal cells. Aberrant epigenetic regulation such as DNA methylation in endometriotic cells is associated with the pathogenesis and development of endometriosis. Although there is a large body of data regarding ERs in endometriosis, our understanding of the roles of ERα and ERß in the pathogenesis of endometriosis remains incomplete. The goal of this review is to provide an overview of the links between endometriosis, ERs and the recent advances of treatment strategies based on ERs modulation. We will also attempt to summarize the current understanding of the molecular and cellular mechanisms of action of ERs and how this could pave the way to new therapeutic strategies.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Metilação de DNA , Endométrio/citologia , Endométrio/metabolismo , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Receptores de Estrogênio/genética , Células Estromais/metabolismo
16.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242705

RESUMO

In women, oral menopausal hormonal therapy (MHT) is associated with adverse effects including an increased incidence of thromboembolic events, classically attributed to an increase in several liver-derived coagulation factors due to hepatic first pass. While platelets are central players in thrombus constitution, their implication in women treated with estrogens remains incompletely characterized. Platelets and their medullar progenitors, megakaryocytes, express estrogen receptors (ER) that may explain, at least in part, a sensitivity to hormonal changes. The purpose of this review is to summarize our current knowledge of estrogen actions on platelets and megakaryocytes in mice following in vivo administration and in women using MHT.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Estrogênios/farmacologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Animais , Estrogênios/uso terapêutico , Feminino , Humanos , Ativação Plaquetária/efeitos dos fármacos , Fatores Sexuais , Trombopoese/efeitos dos fármacos
17.
Am J Pathol ; 187(11): 2499-2507, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28827141

RESUMO

The genitourinary syndrome of menopause has a negative impact on quality of life of postmenopausal women. The treatment of vulvovaginal atrophy includes administration of estrogens. However, oral estrogen treatment is controversial because of its potential risks on venous thrombosis and breast cancer. Estetrol (E4) is a natural estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered as a weak estrogen. However, E4 was recently evaluated in phase 1 to 2 clinical studies and found to act as an oral contraceptive in combination with a progestin, without increasing the level of coagulation factors. We recently showed that E4 stimulates uterine epithelial proliferation through nuclear estrogen receptor (ER) α, but failed to elicit endothelial responses. Herein, we first evaluated the morphological and functional impacts of E4 on the vagina of ovariectomized mice, and we determined the molecular mechanism mediating these effects. Vaginal epithelial proliferation and lubrication after stimulation were found to increase after E4 chronic treatment. Using a combination of pharmacological and genetic approaches, we demonstrated that these E4 effects on the vagina are mediated by nuclear ERα activation. Altogether, we demonstrate that the selective activation of nuclear ERα is both necessary and sufficient to elicit functional and structural effects on the vagina, and therefore E4 appears promising as a therapeutic option to improve vulvovaginal atrophy.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Menopausa/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vagina/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Qualidade de Vida
18.
Am J Pathol ; 187(6): 1273-1287, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28502695

RESUMO

Estrogen receptor α (ERα) regulates gene transcription through two activation functions (ERα-AF1 and ERα-AF2). We recently found that the protection conferred by 17ß-estradiol against obesity and insulin resistance requires ERα-AF2 but not ERα-AF1. However, the interplay between the two ERα-AFs is poorly understood in vivo and the metabolic influence of a specific ERα-AF1 action remains to be explored. To this end, wild-type, ERα-deficient, or ERα-AF1-deficient ovariectomized female mice were fed a high-fat diet and concomitantly administered with vehicle or tamoxifen, a selective ER modulator that acts as a ERα-AF1 agonist/ERα-AF2 antagonist. In ovariectomized wild-type mice, tamoxifen significantly reduced food intake and totally prevented adiposity, insulin resistance, and steatosis. These effects were abolished in ERα-deficient and ERα-AF1-deficient mice, revealing the specific role of ERα-AF1 activation. Finally, hepatic gene expression changes elicited by tamoxifen in wild-type mice were abrogated in ERα-AF1-deficient mice. The combination of pharmacologic and transgenic approaches thus indicates that selective ERα-AF1 activation by tamoxifen is sufficient to elicit metabolic protection, contrasting with the specific requirement of ERα-AF2 in the metabolic actions of 17ß-estradiol. This redundancy in the ability of the two ERα-AFs to separately mediate metabolic prevention strikingly contrasts with the contribution of both ERα-AFs in breast cancer proliferation, shedding new light on the therapeutic potential of selective ER modulation.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Fígado Gorduroso/prevenção & controle , Resistência à Insulina/fisiologia , Obesidade/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Animais , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Ovariectomia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Aumento de Peso/efeitos dos fármacos
19.
Arterioscler Thromb Vasc Biol ; 37(5): 909-919, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28360090

RESUMO

OBJECTIVE: Chronic nonhealing wounds are a substantial medical concern and are associated with morbidity and mortality; thus, new treatment strategies are required. The first step toward personalized/precision medicine in this field is probably in taking sex differences into account. Impaired wound healing is augmented by ischemia, and we previously demonstrated that 17ß-estradiol exerts a major preventive effect against ischemia-induced skin flap necrosis in female mice. However, the equivalent effects of testosterone in male mice have not yet been reported. We then investigated the role of steroid hormones in male mice using a skin flap ischemia model. APPROACH AND RESULTS: Castrated male mice developed skin necrosis after ischemia, whereas intact or castrated males treated with testosterone were equally protected. Testosterone can (1) activate the estrogen receptor after its aromatization into 17ß-estradiol or (2) be reduced into dihydrotestosterone, a nonaromatizable androgen that activates the androgen receptor. We found that dihydrotestosterone protected castrated wild-type mice by promoting skin revascularization, probably through a direct action on resistance arteries, as evidenced using a complementary model of flow-mediated outward remodeling. 17ß-estradiol treatment of castrated male mice also strongly protected them from ischemic necrosis through the activation of estrogen receptor-α by increasing skin revascularization and skin survival. Remarkably, 17ß-estradiol improved skin survival with a greater efficiency than dihydrotestosterone. CONCLUSIONS: Testosterone provides males with a strong protection against cutaneous necrosis and acts through both its estrogenic and androgenic derivatives, which have complementary effects on skin survival and revascularization.


Assuntos
Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Terapia de Reposição Hormonal , Isquemia/prevenção & controle , Neovascularização Fisiológica/efeitos dos fármacos , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Retalhos Cirúrgicos/irrigação sanguínea , Cicatrização/efeitos dos fármacos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Orquiectomia , Ratos Wistar , Pele/metabolismo , Pele/patologia , Retalhos Cirúrgicos/patologia , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos
20.
Diabetologia ; 60(4): 690-700, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28105518

RESUMO

AIMS/HYPOTHESIS: Despite the current pandemic of metabolic diseases, our understanding of the diverse nature of the development of metabolic alterations in people who eat a high-fat diet (HFD) is still poor. We recently demonstrated a cardio-metabolic adaptation in mice fed an HFD, which was characterised by a specific gut and periodontal microbiota profile. Since the severity of hepatic disease is characterised by specific microRNA (miRNA) signatures and the gut microbiota is a key driver of both hepatic disease and miRNA expression, we analysed the expression of three hepatic miRNA and studied their correlation with hepatic triacylglycerol content and gut microbiota. METHODS: Two cohorts of C57BL/6 4-week-old wild-type (WT) male mice (n = 62 and n = 96) were fed an HFD for 3 months to provide a model of metabolic adaptation. Additionally 8-week-old C57BL/6 mice, either WT or of different genotypes, with diverse gut microbiota (ob/ob, Nod1, Cd14 knockout [Cd14KO] and Nod2) or without gut microbiota (axenic mice) were fed a normal chow diet. Following which, glycaemic index, body weight, blood glucose levels and hepatic triacylglycerol levels were measured. Gut (caecum) microbiota taxa were analysed by pyrosequencing. To analyse hepatic miRNA expression, real-time PCR was performed on total extracted miRNA samples. Data were analysed using two-way ANOVA followed by the Dunnett's post hoc test, or by the unpaired Student's t test. A cluster analysis and multivariate analyses were also performed. RESULTS: Our results demonstrated that the expression of miR-181a, miR-666 and miR-21 in primary murine hepatocytes is controlled by lipopolysaccharide in a dose-dependent manner. Of the gut microbiota, Firmicutes were positively correlated and Proteobacteria and Bacteroides acidifaciens were negatively correlated with liver triacylglycerol levels. Furthermore, the relative abundance of Firmicutes was negatively correlated with hepatic expression of miR-666 and miR-21. In contrast, the relative abundance of B. acidifaciens was positively correlated with miR-21. CONCLUSIONS/INTERPRETATION: We propose the involvement of hepatic miRNA, liver triacylglycerols and gut microbiota as a new triad that underlies the molecular mechanisms by which gut microbiota governs hepatic pathophysiology during metabolic adaptation to HFD.


Assuntos
Fígado/metabolismo , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Genótipo , Hepatócitos/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA