Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(14): e112817, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232029

RESUMO

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias
2.
PLoS Pathog ; 19(7): e1011471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410705

RESUMO

Mitochondria fulfil a plethora of cellular functions ranging from energy production to regulation of inflammation and cell death control. The fundamental role of mitochondria makes them a target of choice for invading pathogens, with either an intracellular or extracellular lifestyle. Indeed, the modulation of mitochondrial functions by several bacterial pathogens has been shown to be beneficial for bacterial survival inside their host. However, so far, relatively little is known about the importance of mitochondrial recycling and degradation pathways through mitophagy in the outcome (success or failure) of bacterial infection. On the one hand, mitophagy could be considered as a defensive response triggered by the host upon infection to maintain mitochondrial homeostasis. However, on the other hand, the pathogen itself may initiate the host mitophagy to escape from mitochondrial-mediated inflammation or antibacterial oxidative stress. In this review, we will discuss the diversity of various mechanisms of mitophagy in a general context, as well as what is currently known about the different bacterial pathogens that have developed strategies to manipulate the host mitophagy.


Assuntos
Infecções Bacterianas , Mitofagia , Humanos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Infecções Bacterianas/metabolismo , Inflamação/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298552

RESUMO

Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life.


Assuntos
Membranas Mitocondriais , Proteínas Mitocondriais , Animais , Humanos , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
J Cell Physiol ; 233(2): 1247-1265, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28488768

RESUMO

Obesity is characterized by an excessive triacylglycerol accumulation in white adipocytes. Various mechanisms allowing the tight regulation of triacylglycerol storage and mobilization by lipid droplet-associated proteins as well as lipolytic enzymes have been identified. Increasing energy expenditure by inducing a mild uncoupling of mitochondria in adipocytes might represent a putative interesting anti-obesity strategy as it reduces the adipose tissue triacylglycerol content (limiting alterations caused by cell hypertrophy) by stimulating lipolysis through yet unknown mechanisms, limiting the adverse effects of adipocyte hypertrophy. Herein, the molecular mechanisms involved in lipolysis induced by a mild uncoupling of mitochondria in white 3T3-L1 adipocytes were characterized. Mitochondrial uncoupling-induced lipolysis was found to be independent from canonical pathways that involve lipolytic enzymes such as HSL and ATGL. Finally, enhanced lipolysis in response to mitochondrial uncoupling relies on a form of autophagy as lipid droplets are captured by endolysosomal vesicles. This new mechanism of triacylglycerol breakdown in adipocytes exposed to mild uncoupling provides new insights on the biology of adipocytes dealing with mitochondria forced to dissipate energy.


Assuntos
Adipócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo , Desacopladores/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Interferência de RNA , Transfecção
5.
Stem Cells ; 35(10): 2184-2197, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28795454

RESUMO

Increasing evidence supports that modifications in the mitochondrial content, oxidative phosphorylation (OXPHOS) activity, and cell metabolism influence the fate of stem cells. However, the regulators involved in the crosstalk between mitochondria and stem cell fate remains poorly characterized. Here, we identified a transcriptional regulatory axis, composed of transcription factor 7-like 2 (TCF7L2) (a downstream effector of the Wnt/ß-catenin pathway, repressed during differentiation) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) (the master regulator of mitochondrial biogenesis, induced during differentiation), coupling the loss of pluripotency and early commitment to differentiation, to the initiation of mitochondrial biogenesis and metabolic shift toward OXPHOS. PGC-1α induction during differentiation is required for both mitochondrial biogenesis and commitment to the hepatocytic lineage, and TCF7L2 repression is sufficient to increase PGC-1α expression, mitochondrial biogenesis and OXPHOS activity. We further demonstrate that OXPHOS activity is required for the differentiation toward the hepatocytic lineage, thus providing evidence that bi-directional interactions control stem cell differentiation and mitochondrial abundance and activity. Stem Cells 2017;35:2184-2197.


Assuntos
Fígado/citologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/crescimento & desenvolvimento , Biogênese de Organelas , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transfecção , beta Catenina/metabolismo
6.
J Cell Physiol ; 231(9): 1913-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26680008

RESUMO

Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tapsigargina/farmacologia , Retículo Endoplasmático/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células Hep G2 , Humanos , Mitocôndrias/metabolismo
7.
Mol Cancer ; 14: 79, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25889892

RESUMO

BACKGROUND: Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance. miRNAs have recently been shown to play important roles in tumorigenesis and drug resistance. Moreover, hypoxia also regulates the expression of a series of miRNAs. However, the interaction between chemoresistance, hypoxia and miRNAs has not been explored yet. The aim of this study is to understand the mechanisms activated/inhibited by miRNAs under hypoxia that induce resistance to chemotherapy-induced apoptosis. METHODS: TaqMan low-density array was used to identify changes in miRNA expression when cells were exposed to etoposide under hypoxia or normoxia. The effects of miR-196b overexpression on apoptosis and cell proliferation were studied in HepG2 cells. miR-196b target mRNAs were identified by proteomic analysis, luciferase activity assay, RT-qPCR and western blot analysis. RESULTS: Results showed that hypoxia down-regulated miR-196b expression that was induced by etoposide. miR-196b overexpression increased the etoposide-induced apoptosis and reversed the protection of cell death observed under hypoxia. By a proteomic approach combined with bioinformatics analyses, we identified IGF2BP1 as a potential target of miR-196b. Indeed, miR-196b overexpression decreased IGF2BP1 RNA expression and protein level. The IGF2BP1 down-regulation by either miR-196b or IGF2BP1 siRNA led to an increase in apoptosis and a decrease in cell viability and proliferation in normal culture conditions. However, IGF2BP1 silencing did not modify the chemoresistance induced by hypoxia, probably because it is not the only target of miR-196b involved in the regulation of apoptosis. CONCLUSIONS: In conclusion, for the first time, we identified IGF2BP1 as a direct and functional target of miR-196b and showed that miR-196b overexpression reverses the chemoresistance induced by hypoxia. These results emphasize that the chemoresistance induced by hypoxia is a complex mechanism.


Assuntos
Apoptose/genética , Proliferação de Células/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Proteômica/métodos
8.
Int J Mol Sci ; 16(8): 18224-51, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26258774

RESUMO

Mitochondrial unfolded protein response is a form of retrograde signaling that contributes to ensuring the maintenance of quality control of mitochondria, allowing functional integrity of the mitochondrial proteome. When misfolded proteins or unassembled complexes accumulate beyond the folding capacity, it leads to alteration of proteostasis, damages, and organelle/cell dysfunction. Extensively studied for the ER, it was recently reported that this kind of signaling for mitochondrion would also be able to communicate with the nucleus in response to impaired proteostasis. The mitochondrial unfolded protein response (UPR(mt)) is activated in response to different types and levels of stress, especially in conditions where unfolded or misfolded mitochondrial proteins accumulate and aggregate. A specific UPR(mt) could thus be initiated to boost folding and degradation capacity in response to unfolded and aggregated protein accumulation. Although first described in mammals, the UPR(mt) was mainly studied in Caenorhabditis elegans, and accumulating evidence suggests that mechanisms triggered in response to a UPR(mt) might be different in C. elegans and mammals. In this review, we discuss and integrate recent data from the literature to address whether the UPR(mt) is relevant to mitochondrial homeostasis in mammals and to analyze the putative role of integrated stress response (ISR) activation in response to the inhibition of mtDNA expression and/or accumulation of mitochondrial mis/unfolded proteins.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas , Animais , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Transdução de Sinais , Estresse Fisiológico
9.
Nucleic Acids Res ; 40(11): 4742-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362752

RESUMO

During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a 'neurimmiR', a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.


Assuntos
MicroRNAs/fisiologia , Neurônios/metabolismo , Animais , Humanos , Sistema Imunitário/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
J Cell Physiol ; 228(9): 1802-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23629871

RESUMO

Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
11.
J Cell Physiol ; 228(12): 2365-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23702906

RESUMO

Among the main causes of cancer cell resistance to chemotherapy are p53 mutation and hypoxic tumor microenvironment. However, the effect of hypoxia can be very different from one cell type to the other. We studied the effect of hypoxia on the etoposide-induced cell death in two cancer cell lines, HepG2 and A549 cells. Hypoxia decreased etoposide-induced apoptosis in HepG2 cells but not in A549 cells. Here, we evidenced two pathways, known to play important roles in cancer cell resistance, that are differently affected by hypoxia in these two cell types. First, in HepG2 cells, hypoxia decreased p53 protein level and activity by acting post-transcriptionally and independently of HIF-1. The results suggest an effect of hypoxia on p53 translation. On the other hand, in A549 cells, no effect of hypoxia was observed on p53 level. Secondly, hypoxia decreased DNA damage response in HepG2 cells while this was not the case in A549 cells. Indeed, a decrease in the phosphorylation level of CHK2 and H2AX with a decrease in ATM activity was observed. Importantly, these results evidenced that hypoxia can prevent cancer cell apoptosis by acting at different levels in the cell and that these effects are strongly cell-type dependent.


Assuntos
Hipóxia Celular/fisiologia , Dano ao DNA , Etoposídeo/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Células Hep G2 , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética
12.
J Colloid Interface Sci ; 636: 90-102, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623370

RESUMO

Type 1 diabetes mellitus is an auto-immune disease causing the T-cell mediated destruction of insulin-producing ß-cells, resulting in chronic hyperglycemia. Current treatments such as insulin replacement therapy or the transplantation of pancreas or pancreatic islets present major disadvantages such as the constant need of drugs, as well as a shortage of donor organs. In this review, we discuss a sustainable solution to overcome these limitations combining the use of ß-cells, derived from stem cells, and their encapsulation within a protective matrix. This article provides an exhaustive overview of currently investigated stem cell sources including embryonic, mesenchymal as well as induced pluripotent stem cells in combination with various up to date encapsulation methods allowing the formation of immuno-protective devices. In order to identify current limitations of this interdisciplinary therapeutic approach and to find sustainable solutions, it is essential to consider key aspects from all involved domains. This includes biological parameters such as the stem cell origin but also the different aspects of the encapsulation process, the used materials and their physico-chemical properties such as elasticity, porosity and permeability cut-off as well as the best implantation sites allowing efficient and self-autonomous control of glycemia by the transplanted encapsulated cells.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/terapia , Células-Tronco , Pâncreas , Células Secretoras de Insulina/transplante , Insulina , Diferenciação Celular
13.
Autophagy ; 19(11): 3022-3023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589593

RESUMO

Mitochondria are at the basis of various cellular functions ranging from metabolism and redox homeostasis to inflammation and cell death regulation. Mitochondria therefore constitute an attractive target for invading pathogens to fulfil their infectious cycle. This involves the modulation to their advantage of mitochondrial metabolism and dynamics, including the controlled degradation of mitochondria through mitophagy. Mitophagy might for instance be beneficial for bacterial survival as it can clear bactericidal mitochondrial ROS produced by damaged organelle fragments from the intracellular niche. In the case of the bacterial pathogen Brucella abortus, mitophagy induction has another role in the intracellular lifecycle of the bacteria. Indeed, in our study, we showed that B. abortus triggers an iron-dependent BNIP3L-mediated mitophagy response required for proper bacterial egress and infection of neighboring cells. These results highlight the diversity of mitophagy processes that might be crucial for several stages of cellular infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Autofagia , Mitocôndrias/metabolismo , Macrófagos/metabolismo
14.
Elife ; 122023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428012

RESUMO

Using embryonic stem cells (ESCs) in regenerative medicine or in disease modeling requires a complete understanding of these cells. Two main distinct developmental states of ESCs have been stabilized in vitro, a naïve pre-implantation stage and a primed post-implantation stage. Based on two recently published CRISPR-Cas9 knockout functional screens, we show here that the exit of the naïve state is impaired upon heme biosynthesis pathway blockade, linked in mESCs to the incapacity to activate MAPK- and TGFß-dependent signaling pathways after succinate accumulation. In addition, heme synthesis inhibition promotes the acquisition of 2 cell-like cells in a heme-independent manner caused by a mitochondrial succinate accumulation and leakage out of the cell. We further demonstrate that extracellular succinate acts as a paracrine/autocrine signal, able to trigger the 2C-like reprogramming through the activation of its plasma membrane receptor, SUCNR1. Overall, this study unveils a new mechanism underlying the maintenance of pluripotency under the control of heme synthesis.


Assuntos
Células-Tronco Embrionárias , Ácido Succínico , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Murinas , Ácido Succínico/metabolismo , Animais , Camundongos
15.
Stem Cell Rev Rep ; 19(2): 550-567, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36271312

RESUMO

BACKGROUND: Osteoarthritis (OA) is a highly prevalent joint degenerative disease for which therapeutic treatments are limited or invasive. Cell therapy based on mesenchymal stem/stromal cells (MSCs) is therefore seen as a promising approach for this disease, in both human and horses. As the regenerative potential of MSCs is mainly conferred by paracrine function, the goal of this study was to characterize the secreted proteins of muscle-derived MSCs (mdMSCs) in an in vitro model of OA to evaluate the putative clinical interest of mdMSCs as cell therapy for joint diseases like osteoarthritis. METHODS: An equine osteoarthritis model composed of cartilage explants exposed to pro-inflammatory cytokines was first developed. Then, the effects of mdMSC co-culture on cartilage explant were studied by measuring the glycosaminoglycan release and the NO2- production. To identify the underlying molecular actors, stable isotope-labeling by amino acids in cell culture based secreted protein analyses were conducted, in the presence of serum. The relative abundance of highly sequenced proteins was finally confirmed by western blot. RESULTS: Co-culture with muscle-derived MSCs decreases the cytokine-induced glycosaminoglycan release by cartilage explants, suggesting a protecting effect of mdMSCs. Among the 52 equine proteins sequenced in the co-culture conditioned medium, the abundance of decorin and matrix metalloproteinase 3 was significantly modified, as confirmed by western blot analyses. CONCLUSIONS: These results suggest that muscle-derived MSCs could reduce the catabolic effect of TNFα and IL-1ß on cartilage explant by decreasing the secretion and activity of matrix metalloproteinase 3 and increasing the decorin secretion. mdMSCs capacity to reduce the catabolic consequences of cartilage exposure to pro-inflammatory cytokines. These effects can be explained by mdMSC-secreted bioactive such as TIMP-1 and decorin, known as an inhibitor of MMP3 and an anti-inflammatory protein, respectively.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Cartilagem/metabolismo , Condrócitos , Citocinas/metabolismo , Decorina/metabolismo , Decorina/farmacologia , Glicosaminoglicanos/metabolismo , Cavalos , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Músculos/metabolismo , Osteoartrite/terapia , Osteoartrite/veterinária
16.
J AOAC Int ; 106(4): 886-898, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36961330

RESUMO

BACKGROUND: Food allergen analysis is essential for the development of a risk-based approach for allergen management and labeling. MS has become a method of choice for allergen analysis, even if quantification remains challenging. Moreover, harmonization is still lacking between laboratories, while interlaboratory validation of analytical methods is necessary for such harmonization. OBJECTIVE: This interlaboratory study aimed to evaluate the potential of MS for food allergen detection and quantification using a standard addition quantification strategy and a stable isotope-labeled (SIL) concatemer as an internal standard. METHODS: In-house-produced test material (cookies), blank and incurred with four allergens (egg, milk, peanut, and hazelnut), allergen standards, an internal standard, and the complete methodology (including sample preparation and ultra-HPLC-MS/MS method) were provided to nine laboratories involved in the study. Method sensitivity and selectivity were evaluated with incurred test material and accuracy with spiked test material. Quantification was based on the standard addition strategy using certified reference materials as allergen protein standards and a SIL concatemer as an internal standard. RESULTS: All laboratories were able to detect milk, hazelnut, and peanut in the incurred cookies with sufficient sensitivity to reach the AOAC INTERNATIONAL Standard Method Performance Requirements (SMPR® 2016.002). Egg detection was more complicated due to food processing effects, yet five laboratories reached the sensitivity requirements. Recovery results were laboratory-dependent. Some milk and hazelnut peptides were quantified in agreement with SMPR 2016.002 by all participants. Furthermore, over 90% of the received quantification results agreed with SMPR 2016.002 for method precision. CONCLUSION: The encouraging results of this pioneering interlaboratory study represent an additional step towards harmonization among laboratories testing for allergens. HIGHLIGHTS: In this pioneering interlaboratory study, food allergens were analyzed by MS with characterized incurred and spiked test materials, calibrated with a certified reference material, and a single SIL concatemer used as an internal standard.


Assuntos
Hipersensibilidade Alimentar , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Alérgenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/análise , Análise de Alimentos/métodos
17.
Stem Cell Reports ; 18(1): 254-268, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563686

RESUMO

Translational regulation is of paramount importance for proteome remodeling during stem cell differentiation at both the global and the transcript-specific levels. In this study, we characterized translational remodeling during hepatogenic differentiation of induced pluripotent stem cells (iPSCs) by polysome profiling. We demonstrate that protein synthesis increases during exit from pluripotency and is then globally repressed during later steps of hepatogenic maturation. This global downregulation of translation is accompanied by a decrease in the abundance of protein components of the translation machinery, which involves a global reduction in translational efficiency of terminal oligopyrimidine tract (TOP) mRNA encoding translation-related factors. Despite global translational repression during hepatogenic differentiation, key hepatogenic genes remain efficiently translated, and the translation of several transcripts involved in hepatospecific functions and metabolic maturation is even induced. We conclude that, during hepatogenic differentiation, a global decrease in protein synthesis is accompanied by a specific translational rewiring of hepatospecific transcripts.


Assuntos
Proteínas de Transporte , Biossíntese de Proteínas , Regulação para Baixo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética , Proteínas de Transporte/genética
18.
J Cell Physiol ; 227(6): 2297-310, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21928343

RESUMO

A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.


Assuntos
Replicação do DNA , DNA Mitocondrial/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Animais , Autofagia , Senescência Celular , Regulação da Expressão Gênica , Homeostase , Humanos , Mitocôndrias/patologia , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico , Transcrição Gênica
19.
Am J Physiol Endocrinol Metab ; 302(9): E1123-41, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22354779

RESUMO

In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNFα, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by FCCP were investigated on the mitochondrial population of 3T3-L1 adipocytes by both quantitative and qualitative approaches. We found that mild mitochondrial uncoupling does not stimulate mitochondrial biogenesis in adipocytes but induces an adaptive cell response characterized by quantitative modifications of mitochondrial protein content. Superoxide anion radical level was increased in mitochondria of both TNFα- and FCCP-treated adipocytes, whereas mitochondrial DNA copy number was significantly higher only in TNFα-treated cells. Subproteomic analysis revealed that the abundance of pyruvate carboxylase was reduced significantly in mitochondria of TNFα- and FCCP-treated adipocytes. Functional study showed that overexpression of this major enzyme of lipid metabolism is able to prevent the triglyceride content reduction in adipocytes exposed to mitochondrial uncoupling or TNFα. These results suggest a new mechanism by which the effects of mitochondrial uncoupling might limit triglyceride accumulation in adipocytes.


Assuntos
Adipócitos/enzimologia , Mitocôndrias/metabolismo , Piruvato Carboxilase/metabolismo , Triglicerídeos/metabolismo , Células 3T3-L1 , Adaptação Fisiológica , Adipócitos/efeitos dos fármacos , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , Fator de Necrose Tumoral alfa/fisiologia , Desacopladores/farmacologia
20.
BMC Cancer ; 12: 391, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22954140

RESUMO

BACKGROUND: Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells. METHODS: MDA-MB-231 and HepG2 cells were incubated in the presence of taxol or etoposide respectively under normoxia and hypoxia and apoptosis was analysed. A whole transcriptome analysis was performed in order to identify genes whose expression profile was correlated with apoptosis. The effect of gene invalidation using siRNA was studied on drug-induced apoptosis. RESULTS: MDA-MB-231 cells incubated in the presence of taxol were protected from apoptosis and cell death by hypoxia. We demonstrated that TMEM45A expression was associated with taxol resistance. TMEM45A expression was increased both in MDA-MB-231 human breast cancer cells and in HepG2 human hepatoma cells in conditions where protection of cells against apoptosis induced by chemotherapeutic agents was observed, i.e. under hypoxia in the presence of taxol or etoposide. Moreover, this resistance was suppressed by siRNA-mediated silencing of TMEM45A. Kaplan Meier curve showed an association between high TMEM45A expression and poor prognostic in breast cancer patients. Finally, TMEM45 is highly expressed in normal differentiated keratinocytes both in vitro and in vivo, suggesting that this protein is involved in epithelial functions. CONCLUSION: Altogether, our results unravel a new mechanism for taxol and etoposide resistance mediated by TMEM45A. High levels of TMEM45A expression in tumors may be indicative of potential resistance to cancer therapy, making TMEM45A an interesting biomarker for resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Membrana/genética , Transcriptoma/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epirubicina/farmacologia , Etoposídeo/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Estimativa de Kaplan-Meier , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Paclitaxel/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA