Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell ; 157(3): 565-79, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766806

RESUMO

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Assuntos
Pontos de Checagem do Ciclo Celular , Miócitos Cardíacos/citologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Sequestradores de Radicais Livres/farmacologia , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra
2.
Genes Dev ; 28(24): 2693-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512557

RESUMO

PARP inhibitors (PARPis) are being used in patients with BRCA1/2 mutations. However, doubly deficient BRCA1(-/-)53BP1(-/-) cells or tumors become resistant to PARPis. Since 53BP1 or its known downstream effectors, PTIP and RIF1 (RAP1-interacting factor 1 homolog), lack enzymatic activities directly implicated in DNA repair, we decided to further explore the 53BP1-dependent pathway. In this study, we uncovered a nuclease, Artemis, as a PTIP-binding protein. Loss of Artemis restores PARPi resistance in BRCA1-deficient cells. Collectively, our data demonstrate that Artemis is the major downstream effector of the 53BP1 pathway, which prevents end resection and promotes nonhomologous end-joining and therefore directly competes with the homologous recombination repair pathway.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Transporte/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA , Endonucleases , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
3.
Transl Res ; 217: 33-46, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31707040

RESUMO

Tumor treating fields (TTFields) is a noninvasive physical modality of cancer therapy that applies low-intensity, intermediate frequency, and alternating electric fields to a tumor. Interference with mitosis was the first mechanism describing the effects of TTFields on cancer cells; however, TTFields was shown to not only reduce the rejoining of radiation-induced DNA double-strand breaks (DSBs), but to also induce DNA DSBs. The mechanism(s) by which TTFields generates DNA DSBs is related to the generation of replication stress including reduced expression of the DNA replication complex genes MCM6 and MCM10 and the Fanconi's Anemia pathway genes. When markers of DNA replication stress as a result of TTFields exposure were examined, newly replicated DNA length was reduced with TTFields exposure time and there was increased R-loop formation. Furthermore, as cells were exposed to TTFields a conditional vulnerability environment developed which rendered cells more susceptible to DNA damaging agents or agents that interfere with DNA repair or replication fork maintenance. The effect of TTFields exposure with concomitant exposure to cisplatin or PARP inhibition, the combination of TTFields plus concomitant PARP inhibition followed by radiation, or radiation alone at the end of a TTFields exposure were all synergistic. Finally, gene expression analysis of 47 key mitosis regulator genes suggested that TTFields-induced mitotic aberrations and DNA damage/replication stress events, although intimately linked to one another, are likely initiated independently of one another. This suggests that enhanced replication stress and reduced DNA repair capacity are also major mechanisms of TTFields effects, effects for which there are therapeutic implications.


Assuntos
Replicação do DNA , Terapia por Estimulação Elétrica/métodos , Neoplasias/terapia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA , Humanos , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases
4.
J Clin Invest ; 128(12): 5307-5321, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30371505

RESUMO

After the initial responsiveness of triple-negative breast cancers (TNBCs) to chemotherapy, they often recur as chemotherapy-resistant tumors, and this has been associated with upregulated homology-directed repair (HDR). Thus, inhibitors of HDR could be a useful adjunct to chemotherapy treatment of these cancers. We performed a high-throughput chemical screen for inhibitors of HDR from which we obtained a number of hits that disrupted microtubule dynamics. We postulated that high levels of the target molecules of our screen in tumors would correlate with poor chemotherapy response. We found that inhibition or knockdown of dynamin 2 (DNM2), known for its role in endocytic cell trafficking and microtubule dynamics, impaired HDR and improved response to chemotherapy of cells and of tumors in mice. In a retrospective analysis, levels of DNM2 at the time of treatment strongly predicted chemotherapy outcome for estrogen receptor-negative and especially for TNBC patients. We propose that DNM2-associated DNA repair enzyme trafficking is important for HDR efficiency and is a powerful predictor of sensitivity to breast cancer chemotherapy and an important target for therapy.


Assuntos
Antineoplásicos/farmacologia , Dinaminas/metabolismo , Reparo de DNA por Recombinação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Células CHO , Cricetulus , Dinamina II , Dinaminas/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA