Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 32(1): 89-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34424127

RESUMO

INTRODUCTION: Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED: This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION: In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.


Assuntos
Patentes como Assunto , Esquistossomose , Sistemas de Liberação de Medicamentos , Humanos , Doenças Negligenciadas/tratamento farmacológico , Esquistossomose/tratamento farmacológico , Tecnologia
2.
Int J Biol Macromol ; 193(Pt A): 450-456, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688680

RESUMO

Enoxaparin is an effective biological molecule for prevention and treatment of coagulation disorders. However, it is poorly absorbed in the gastrointestinal tract. In this study, we developed an Eudragit® L100 coated chitosan core shell nanoparticles for enoxaparin oral delivery (Eud/CS/Enox NPs) through a completely eco-friendly method without employing any high-energy homogenizer technique and any organic solvents. Spherical nanocarriers were successfully prepared with particle size lower than 300 nm, polydispersity index about 0.12 and zeta potential higher than +25 mV, entrapment efficiency greater than 95% and the in vitro release behavior confirms the good colloidal stability and the successful Eudragit® L100 coating process demonstrated by negligible cumulative enoxaparin release (<10%) when the particles are submitted to simulated gastric fluid conditions. Finally, we demonstrated that the core-shell structure of the particle influenced the drug release mechanism of the formulations, indicating the presence of the Eudragit® L100 on the surface of the particles. These results suggested that enteric-coating approach and drug delivery nanotechnology can be successfully explored as potential tools for oral delivery of enoxaparin.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Enoxaparina/química , Nanopartículas/química , Liberação Controlada de Fármacos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA