Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392403

RESUMO

Continuous adaptations of the movement system to changing environments or task demands rely on superposed fractal processes exhibiting power laws, that is, multifractality. The estimators of the multifractal spectrum potentially reflect the adaptive use of perception, cognition, and action. To observe time-specific behavior in multifractal dynamics, a multiscale multifractal analysis based on DFA (MFMS-DFA) has been recently proposed and applied to cardiovascular dynamics. Here we aimed at evaluating whether MFMS-DFA allows identifying multiscale structures in the dynamics of human movements. Thirty-six (12 females) participants pedaled freely, after a metronomic initiation of the cadence at 60 rpm, against a light workload for 10 min: in reference to cycling (C), cycling while playing "Tetris" on a computer, alone (CT) or collaboratively (CTC) with another pedaling participant. Pedal revolution periods (PRP) series were examined with MFMS-DFA and compared to linearized surrogates, which attested to a presence of multifractality at almost all scales. A marked alteration in multifractality when playing Tetris was evidenced at two scales, τ ≈ 16 and τ ≈ 64 s, yet less marked at τ ≈ 16 s when playing collaboratively. Playing Tetris in collaboration attenuated these alterations, especially in the best Tetris players. This observation suggests the high sensitivity to cognitive demand of MFMS-DFA estimators, extending to the assessment of skill/demand interplay from individual behavior. So, by identifying scale-dependent multifractal structures in movement dynamics, MFMS-DFA has obvious potential for examining brain-movement coordinative structures, likely with sufficient sensitivity to find echo in diagnosing disorders and monitoring the progress of diseases that affect cognition and movement control.

2.
Sensors (Basel) ; 23(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177701

RESUMO

Cardiac coherence is a state achieved when one controls their breathing rate during the so-called resonance frequency breathing. This maneuver allows respiratory-driven vagal modulations of the heart rate to superimpose with sympathetic modulations occurring at 0.1 Hz, thereby maximizing autonomous power in heart-to-brain connections. These stimulations have been shown to improve vagal regulations, which results in obvious benefits for both mental and organic health. Here, we present a device that is able to deliver visual and haptic cues, as well as HRV biofeedback information to guide the user in maintaining a 0.1 Hz breathing frequency. We explored the effectiveness of cardiac coherence in three guidance conditions: visual, haptic and visuo-haptic breathing. Thirty-two healthy students (sixteen males) were divided into three groups that experienced five minutes of either visual, haptic and visuo-haptic guided breathing at 0.1 Hz. The effects of guidance on the (adequate) breathing pattern and heart rate variability (HRV) were analyzed. The interest of introducing haptic breathing to achieve cardiac coherence was shown in the haptic and visuo-haptic groups. Especially, the P0.1 index, which indicates how the autonomous power is 'concentrated' at 0.1 Hz in the PSD spectrum, demonstrated the superiority of combining haptic with visual sensory inputs in potentiating cardiac coherence (0.55 ± 0.20 for visuo-haptic vs. 0.28 ± 0.14 for visual only guidance; p < 0.05) haptic-induced effectiveness could be an asset for a more efficient and time-saving practice, allowing improved health and well-being even under tight time constraints.


Assuntos
Tecnologia Háptica , Respiração , Masculino , Humanos , Coração , Taxa Respiratória/fisiologia , Nervo Vago/fisiologia , Frequência Cardíaca/fisiologia
3.
Entropy (Basel) ; 25(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761663

RESUMO

Entropy-based and fractal-based metrics derived from heart rate variability (HRV) have enriched the way cardiovascular dynamics can be described in terms of complexity. The most commonly used multifractal testing, a method using q moments to explore a range of fractal scaling in small-sized and large-sized fluctuations, is based on detrended fluctuation analysis, which examines the power-law relationship of standard deviation with the timescale in the measured signal. A more direct testing of a multifractal structure exists based on the Shannon entropy of bin (signal subparts) proportion. This work aims to reanalyze HRV during cognitive tasks to obtain new markers of HRV complexity provided by entropy-based multifractal spectra using the method proposed by Chhabra and Jensen in 1989. Inter-beat interval durations (RR) time series were obtained in 28 students comparatively in baseline (viewing a video) and during three cognitive tasks: Stroop color and word task, stop-signal, and go/no-go. The new HRV estimators were extracted from the f/α singularity spectrum of the RR magnitude increment series, established from q-weighted stable (log-log linear) power laws, namely: (i) the whole spectrum width (MF) calculated as αmax - αmin; the specific width representing large-sized fluctuations (MFlarge) calculated as α0 - αq+; and small-sized fluctuations (MFsmall) calculated as αq- - α0. As the main results, cardiovascular dynamics during Stroop had a specific MF signature while MFlarge was rather specific to go/no-go. The way these new HRV markers could represent different aspects of a complete picture of the cognitive-autonomic interplay is discussed, based on previously used entropy- and fractal-based markers, and the introduction of distribution entropy (DistEn), as a marker recently associated specifically with complexity in the cardiovascular control.

4.
Entropy (Basel) ; 23(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070402

RESUMO

Recent research has clarified the existence of a networked system involving a cortical and subcortical circuitry regulating both cognition and cardiac autonomic control, which is dynamically organized as a function of cognitive demand. The main interactions span multiple temporal and spatial scales and are extensively governed by nonlinear processes. Hence, entropy and (multi)fractality in heart period time series are suitable to capture emergent behavior of the cognitive-autonomic network coordination. This study investigated how entropy and multifractal-multiscale analyses could depict specific cognitive-autonomic architectures reflected in the heart rate dynamics when students performed selective inhibition tasks. The participants (N=37) completed cognitive interference (Stroop color and word task), action cancellation (stop-signal) and action restraint (go/no-go) tasks, compared to watching a neutral movie as baseline. Entropy and fractal markers (respectively, the refined composite multiscale entropy and multifractal-multiscale detrended fluctuation analysis) outperformed other time-domain and frequency-domain markers of the heart rate variability in distinguishing cognitive tasks. Crucially, the entropy increased selectively during cognitive interference and the multifractality increased during action cancellation. An interpretative hypothesis is that cognitive interference elicited a greater richness in interactive processes that form the central autonomic network while action cancellation, which is achieved via biasing a sensorimotor network, could lead to a scale-specific heightening of multifractal behavior.

5.
Entropy (Basel) ; 22(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33286091

RESUMO

Despite considerable appeal, the growing appreciation of biosignals complexity reflects that system complexity needs additional support. A dynamically coordinated network of neurovisceral integration has been described that links prefrontal-subcortical inhibitory circuits to vagally-mediated heart rate variability. Chronic stress is known to alter network interactions by impairing amygdala functional connectivity. HRV-biofeedback training can counteract stress defects. We hypothesized the great value of an entropy-based approach of beat-to-beat biosignals to illustrate how HRVB training restores neurovisceral complexity, which should be reflected in signal complexity. In thirteen moderately-stressed participants, we obtained vagal tone markers and psychological indexes (state anxiety, cognitive workload, and Perceived Stress Scale) before and after five-weeks of daily HRVB training, at rest and during stressful cognitive tasking. Refined Composite Multiscale Entropy (RCMSE) was computed over short time scales as a marker of signal complexity. Heightened vagal tone at rest and during stressful tasking illustrates training benefits in the brain-to-heart circuitry. The entropy index reached the highest significance levels in both variance and ROC curves analyses. Restored vagal activity at rest correlated with gain in entropy. We conclude that HRVB training is efficient in restoring healthy neurovisceral complexity and stress defense, which is reflected in HRV signal complexity. The very mechanisms that are involved in system complexity remain to be elucidated, despite abundant literature existing on the role played by amygdala in brain interconnections.

6.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R469-R478, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741930

RESUMO

Frequency-domain indices of heart rate variability (HRV) have been used as markers of sympathovagal balance. However, they have been shown to be degraded by interindividual or task-dependent variability, and especially variations in breathing frequency. The study introduces a method to analyze respiration-(vagally) mediated HRV, to better assess subtle variations in sympathovagal balance using ECG recordings. The method enhances HRV analysis by focusing the quantification of respiratory sinus arrhythmia (RSA) gain on the respiratory frequency. To this end, instantaneous respiratory frequency was obtained with ECG-derived respiration (EDR) and was used for variable frequency complex demodulation (VFCDM) of R-R intervals to extract RSA. The ability to detect cognitive stress in 27 subjects (athletes and nonathletes) was taken as a quality criterion to compare our method to other HRV analyses: Root mean square of successive differences, Fourier transform, wavelet transform, and scaling exponent. Three computer-based tasks from MATB-II were used to induce cognitive stress. Sympathovagal index (HFnu) computed with our method better discriminates cognitive tasks from baseline, as indicated by P values and receiver operating characteristic curves. Here, transient decreases in respiratory frequency have shown to bias classical HRV indices, while only EDR-VFCDM consistently exhibits the expected decrease in the HFnu index with cognitive stress in both groups and all cognitive tasks. We conclude that EDR-VFCDM is robust against atypical respiratory profiles, which seems relevant to assess variations in mental demand. Given the variety of individual respiratory profiles reported especially in highly trained athletes and patients with chronic respiratory conditions, EDR-VFCDM could better perform in a wide range of applications.


Assuntos
Atletas , Eletrocardiografia , Frequência Cardíaca , Coração/inervação , Aptidão Física , Respiração , Comportamento Sedentário , Processamento de Sinais Assistido por Computador , Sistema Nervoso Simpático/fisiologia , Nervo Vago/fisiologia , Adolescente , Atletas/psicologia , Cognição , Humanos , Masculino , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estresse Psicológico/psicologia , Fatores de Tempo , Adulto Jovem
7.
Adv Physiol Educ ; 42(3): 493-499, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30035630

RESUMO

Fractal physiology demonstrated growing interest over the last decades among physiologists, neuroscientists, and clinicians. Many physiological systems coordinate themselves for reducing variability and maintain a steady state. When recorded over time, the output signal exhibits small fluctuations around a stable value. It is becoming increasingly clear that these fluctuations, in most free-running healthy systems, are not simply due to uncorrelated random errors and possess interesting properties, one of which is the property of fractal dynamics. Fractal dynamics model temporal processes in which similar patterns occur across multiple timescales of measurement. Smaller copies of a pattern are nested within larger copies of the pattern, a property termed scale invariance. It is an intriguing process that may deserve attention for implementing curricular development for students to reconsider homeostasis. Teaching fractal dynamics needs to make calculating resources available for students. The present paper offers a calculating resource that uses a basic formula and is executable in a simple spreadsheet. The spreadsheet allows computing detrended fluctuation analysis (DFA), the most frequently used method in the literature to quantify the fractal-scaling index of a physiological time series. DFA has been nicely described by the group at Harvard that designed it; the authors made the C language source available. Going further, it is suggested here that a guide to build DFA step by step in a spreadsheet has many advantages for teaching fractal physiology and beyond: 1) it promotes the DIY (do-it-yourself) in students and highlights scaling concepts; and 2) it makes DFA available for people not familiarized with executing code in C language.


Assuntos
Fractais , Frequência Cardíaca/fisiologia , Fisiologia/educação , Humanos
8.
Biochem J ; 444(2): 315-21, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22390862

RESUMO

Bupivacaine is a widely used anaesthetic injected locally in clinical practice for short-term neurotransmission blockade. However, persistent side effects on mitochondrial integrity have been demonstrated in muscle parts surrounding the injection site. We use the precise language of metabolic control analysis in the present study to describe in vivo consequences of bupivacaine injection on muscle energetics during contraction. We define a model system of muscle energy metabolism in rats with a sciatic nerve catheter that consists of two modules of reactions, ATP/PCr (phosphocreatine) supply and ATP/PCr demand, linked by the common intermediate PCr detected in vivo by (31)P-MRS (magnetic resonance spectroscopy). Measured system variables were [PCr] (intermediate) and contraction (flux). We first applied regulation analysis to quantify acute effects of bupivacaine. After bupivacaine injection, contraction decreased by 15.7% and, concomitantly, [PCr] increased by 11.2%. The regulation analysis quantified that demand was in fact directly inhibited by bupivacaine (-21.3%), causing an increase in PCr. This increase in PCr indirectly reduced mitochondrial activity (-22.4%). Globally, the decrease in contractions was almost fully explained by inhibition of demand (-17.0%) without significant effect through energy supply. Finally we applied elasticity analysis to quantify chronic effects of bupivacaine iterative injections. The absence of a difference in elasticities obtained in treated rats when compared with healthy control rats clearly shows the absence of dysfunction in energetic control of muscle contraction energetics. The present study constitutes the first and direct evidence that bupivacaine myotoxicity is compromised by other factors during contraction in vivo, and illustrates the interest of modular approaches to appreciate simple rules governing bioenergetic systems when affected by drugs.


Assuntos
Bupivacaína/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Contração Muscular/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
9.
Eur J Appl Physiol ; 113(10): 2587-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877484

RESUMO

PURPOSE: Challenging environmental conditions including heat and humidity are associated with particular risks to the health of runners and triathletes during prolonged events. The heat production of a runner is the product of its energy cost of running (C r) by its velocity. Since C r varies greatly among humans, those individuals with high C r are more exposed to heat stress in warm and humid conditions. Although risk factor awareness is crucial to the prevention of heat stroke and potential fatalities associated therewith, how C r affects the highest sustainable velocity (V) at which maximal heat loss matches heat production has not been quantified to date. METHODS: Here, we computed in virtual runners weighting 45-75 kg, the influence of C r variability from 3.8 to 4.4 J·m(-1)·kg(-1) on V. Heat loss by radiation, convection, and conduction was assessed from known equations including body dimensions, running velocity (3.4-6.2 m·s(-1)), air temperature (T a, 10-35 °C) and relative humidity (r h, 50, 70 and 90 %). RESULTS: We demonstrated a marked and almost linear influence of C r on V in hot and humid conditions: +0.1 J·kg(-1)·m(-1) in C r corresponded to -4 % in V. For instance, in conditions 25 °C r h 70 %, 65-kg runners with low C r could sustain a running speed of 5.7 m·s(-1) as compared to only 4.3 m·s(-1) in runners with high C r, which is huge. CONCLUSION: We conclude that prior knowledge of individual C r in athletes exposed to somewhat warm and humid environments during prolonged running is one obvious recommendation for minimizing heat illness risk.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Umidade , Corrida/fisiologia , Adulto , Humanos , Masculino , Resistência Física
10.
Artigo em Inglês | MEDLINE | ID: mdl-35162733

RESUMO

During COVID-19 pandemic peaks, healthcare professionals are a frontline workforce that deals with death on an almost daily basis and experiences a marked increase in workload. Returning home is also associated with fear of contaminating or be contaminated. An obvious consequence is stress accumulation and associated risks, especially in caregivers in mobility and possibly in human resource teams managing mobility. Here, during the second pandemic peak, we designed a 15-min testing procedure at the workplace, combining HADS and Brief COPE questionnaires with heart rate variability (HRV) recordings to evaluate psychophysiological status in four groups: caregivers in mobility (MOB); human resources teams managing mobility (ADM); caregivers without mobility (N-MOB); and university researchers teaching online (RES). Anxiety, depression, coping strategies, vagally-mediated heart rate regulation, and nonlinear dynamics (entropy) in cardiac autonomic control were quantified. Anxiety reached remarkably high levels in both MOB and ADM, which was reflected in vagal and nonlinear HRV markers. ADM maintained a better problem-solving capacity. MOB and N-MOB exhibited degraded problem-solving capacity. Multivariate approaches show how combining psychological and physiological markers helps draw highly group-specific psychophysiological profiles. Entropy in HRV and problem-solving capacity were highly relevant for that. Combining HADS and Brief COPE questionnaires with HRV testing at the workplace may provide highly relevant cues to manage mobility during crises as well as prevent health risks, absenteeism, and more generally malfunction incidents at hospitals.


Assuntos
COVID-19 , Cuidadores , Frequência Cardíaca , Humanos , Pandemias , SARS-CoV-2 , Recursos Humanos , Local de Trabalho
11.
Brain Sci ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741679

RESUMO

Research on sensorimotor rhythms (SMR) based on neurofeedback (NFb) emphasizes improvements in selective attention associated with SMR amplification. However, the long-term training proposed in most studies posed the question of acceptability, which led to the evaluation of the potential of a single NFb session. Based on cognitive and autonomic controls interfering with attention processes, we hypothesized changes in selective attention after a single SMR-NFb session, along with changes in brain-heart interplay, which are reflected in the multifractality of heartbeat dynamics. Here, young healthy participants (n = 35, 20 females, 21 ± 3 years) were randomly assigned either to a control group (Ctrl) watching a movie or to a neurofeedback (NFb) group performing a single session of SMR-NFb. A headset with EEG electrodes (positioned on C3 and C4) connected to a smartphone app served to guide and to evaluate NFb training efficacy. A Stroop task was performed for 8 min by each group before and after the intervention (movie vs. SMR-NFb) while collecting heart rate variability and C4-EEG for 20 min. When compared to Ctrl, the NFb group exhibited better Stroop performance, especially when facing incongruent trials. The multifractality and NFb training efficacy were identified as strong predictors of the gain in global Stroop performance, while multifractality was the only predictor regarding incongruent trials. We conclude that a single session of SMR-NFb improves selective attention in healthy individuals through the specific reorganization of brain-heart interplay, which is reflected in multifractal heartbeat dynamics.

12.
Front Physiol ; 12: 662076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935808

RESUMO

There is some evidence that an improved understanding of executive control in the human movement system could be gained from explorations based on scale-free, fractal analysis of cyclic motor time series. Such analyses capture non-linear fractal dynamics in temporal fluctuations of motor instances that are believed to reflect how executive control enlist a coordination of multiple interactions across temporal scales between the brain, the body and the task environment, an essential architecture for adaptation. Here by recruiting elite rugby players with high motor skills and submitting them to the execution of rhythmic motor tasks involving legs and arms concurrently, the main attempt was to build on the multifractal formalism of movement control to show a marginal need of effective adaptation in concurrent tasks, and a preserved adaptability despite complexified motor execution. The present study applied a multifractal analytical approach to experimental time series and added surrogate data testing based on shuffled, ARFIMA, Davies&Harte and phase-randomized surrogates, for assessing scale-free behavior in repeated motor time series obtained while combining cycling with finger tapping and with circling. Single-tasking was analyzed comparatively. A focus-based multifractal-DFA approach provided Hurst exponents (H) of individual time series over a range of statistical moments H(q), q = [-15 15]. H(2) quantified monofractality and H(-15)-H(15) provided an index of multifractality. Despite concurrent tasking, participants showed great capacity to keep the target rhythm. Surrogate data testing showed reasonable reliability in using multifractal formalism to decipher movement control behavior. The global (i.e., monofractal) behavior in single-tasks did not change when adapting to dual-task. Multifractality dominated in cycling and did not change when cycling was challenged by upper limb movements. Likewise, tapping and circling behaviors were preserved despite concurrent cycling. It is concluded that the coordinated executive control when adapting to dual-motor tasking is not modified in people having developed great motor skills through physical training. Executive control likely emerged from multiplicative interactions across temporal scales which puts emphasis on multifractal approaches of the movement system to get critical cues on adaptation. Extending such analyses to less skilled people is appealing in the context of exploring healthy and diseased movement systems.

13.
Sci Rep ; 11(1): 587, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436738

RESUMO

Daily-life behaviors strongly rely on visuomotor integration, a complex sensorimotor process with obvious plasticity. Visual-perceptive and visual-cognitive functions are degraded by neurological disorders and brain damage, but are improved by vision training, e.g. in athletes. Hence, developing tools to evaluate/improve visuomotor abilities has found echo among psychologists, neurophysiologists, clinicians and sport professionals. Here we implemented the Dynavision visuomotor reaction task in virtual reality (VR) to get a flexible tool to place high demands on visual-perceptive and visual-cognitive processes, and explore individual abilities in visuomotor integration. First, we demonstrated high test-retest reliability for the task in VR among healthy physically-active students (n = 64, 32 females). Second, the capture of head movements thanks to the VR-headset sensors provided new and reliable information on individual visual-perceptual strategies, which added significant value to explore visuomotor phenotypes. A factor analysis of mixed data and hierarchical clustering on principal components points to head movements, video-games practice and ball-tracking sports as critical cues to draw visuomotor phenotypes among our participants. We conclude that the visuomotor task in VR is a reliable, flexible and promising tool. Since VR nowadays can serve e.g. to modulate multisensorial integration by creating visual interoceptive-exteroceptive conflicts, or placing specifically designed cognitive demand, much could be learned on complex integrated visuomotor processes through VR experiments. This offers new perspectives for post brain injury risk evaluation, rehabilitation programs and visual-cognitive training.


Assuntos
Cognição/fisiologia , Desempenho Psicomotor/fisiologia , Realidade Virtual , Percepção Visual/fisiologia , Adulto , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/reabilitação , Sinais (Psicologia) , Feminino , Cabeça/fisiologia , Humanos , Aprendizagem , Masculino , Movimento , Fenótipo , Reprodutibilidade dos Testes , Esportes , Jogos de Vídeo , Adulto Jovem
14.
Front Physiol ; 12: 713076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354603

RESUMO

Beyond apparent simplicity, visuomotor dexterity actually requires the coordination of multiple interactions across a complex system that links the brain, the body and the environment. Recent research suggests that a better understanding of how perceptive, cognitive and motor activities cohere to form executive control could be gained from multifractal formalisms applied to movement behavior. Rather than a central executive "talking" to encapsuled components, the multifractal intuition suggests that eye-hand coordination arises from multiplicative cascade dynamics across temporal scales of activity within the whole system, which is reflected in movement time series. Here we examined hand movements of sport students performing a visuomotor task in virtual reality (VR). The task involved hitting spatially arranged targets that lit up on a virtual board under critical time pressure. Three conditions were compared where the visual search field changed: whole board (Standard), half-board lower view field (LVF) and upper view field (UVF). Densely sampled (90 Hz) time series of hand motions captured by VR controllers were analyzed by a focus-based multifractal detrended fluctuation analysis (DFA). Multiplicative rather than additive interactions across temporal scales were evidenced by testing comparatively phase-randomized surrogates of experimental series, which confirmed nonlinear processes. As main results, it was demonstrated that: (i) the degree of multifractality in hand motion behavior was minimal in LVF, a familiar visual search field where subjects correlatively reached their best visuomotor response times (RTs); (ii) multifractality increased in the less familiar UVF, but interestingly only for the non-dominant hand; and (iii) multifractality increased further in Standard, for both hands indifferently; in Standard, the maximal expansion of the visual search field imposed the highest demand as evidenced by the worst visuomotor RTs. Our observations advocate for visuomotor dexterity best described by multiplicative cascades dynamics and a system-wide distributed control rather than a central executive. More importantly, multifractal metrics obtained from hand movements behavior, beyond the confines of the brain, offer a window on the fine organization of control architecture, with high sensitivity to hand-related control behavior under specific constraints. Appealing applications may be found in movement learning/rehabilitation, e.g., in hemineglect people, stroke patients, maturing children or athletes.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33669908

RESUMO

Because most humans live and work in populated environments, researchers recently took into account that people may not only experience first-hand stress, but also second-hand stress related to the ability to empathically share another person's stress response. Recently, researchers have begun to more closely examine the existence of such empathic stress and highlighted the human propensity to physiologically resonate with the stress responses of others. As in case of first-hand stress, empathic stress could be deleterious for health if people experience exacerbated activation of hypothalamic-pituitary-adrenal and autonomic nervous systems. Thus, exploring empathic stress in an observer watching someone else experiencing stress is critical to gain a better understanding of physiological resonance and conduct strategies for health prevention. In the current study, we investigated the influence of empathic stress responses on heart rate variability (HRV) with a specific focus on nonlinear dynamics. Classic and nonlinear markers of HRV time series were computed in both targets and observers during a modified Trier social stress test (TSST). We capitalized on multiscale entropy, a reliable marker of complexity for depicting neurovisceral interactions (brain-to-heart and heart-to-brain) and their role in physiological resonance. State anxiety and affect were evaluated as well. While classic markers of HRV were not impacted by empathic stress, we showed that the complexity marker reflected the existence of empathic stress in observers. More specifically, a linear model highlighted a physiological resonance phenomenon. We conclude on the relevance of entropy in HRV dynamics, as a marker of complexity in neurovisceral interactions reflecting physiological resonance in empathic stress.


Assuntos
Sistema Nervoso Autônomo , Dinâmica não Linear , Empatia , Coração , Frequência Cardíaca , Humanos , Estresse Fisiológico
16.
Biochem J ; 420(1): 67-72, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19228117

RESUMO

In the exercising muscle, acute reduction in ambient oxygen impairs muscle contraction because of the effects of hypoxia on mitochondrial ATP supply. The less marked impairment reported after long-term exposure to hypoxia points to changes in the regulation of the energetic system of contraction in HC (hypoxic conditioned) animals. This energetic system is conceptually defined here as two modules: the ATP/PCr (phosphocreatine)-producer and the ATP/PCr-consumer connected by energetic intermediates. Modular control analysis that combines top-down control analysis with non-invasive 31P-NMR spectroscopy was used to describe the effects of hypoxia on each module and their adaptation. Modulations of steady levels of ATP turnover (indirectly assessed as force output) and muscle PCr were obtained in HC rats (6 weeks at 10.5% O2) compared with N (normoxic) rats. Modular control and regulation analyses quantified the elasticity to PCr of each module in N and HC rats as well as the direct effect of acute hypoxia on the ATP/PCr-producer module. Similar elasticities in N and HC rats indicate the absence of response to long-term hypoxia in internal regulations of the ATP supply and demand pathways. The less marked impairment of contraction by acute hypoxia in HC rats (-9+/-6% versus -17+/-14% in N rats, P<0.05) was therefore fully explained by a lower direct effect (HC -31+/-13% versus N -44+/-23%, P<0.05) of acute hypoxia on mitochondrial ATP supply. This points to a positive adaptation to chronic hypoxia. Modular control analysis in vivo may provide powerful tools to find out improved function (alternatively dysfunction) at the system level in conditioned animals.


Assuntos
Metabolismo Energético , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Esquelético/fisiologia , Fosfocreatina/metabolismo , Ratos
17.
Magn Reson Med ; 62(5): 1099-105, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19780163

RESUMO

The purpose of this study was to demonstrate the feasibility of steady-state True fast imaging with steady precession (TrueFISP) four-dimensional imaging of mouse heart at high resolution and its efficiency for cardiac volumetry. Three-dimensional cine-imaging of control and hypoxic mice was carried out at 4.7 T without magnetization preparation or ECG-triggering. The k-space lines were acquired with the TrueFISP sequence (pulse repetition time/echo time = 4/2 ms) in a repeated sequential manner. Retrospective reordering of raw data allowed the reconstruction of 10 three-dimensional images per cardiac cycle. The acquisition scheme used an alternating radiofrequency phase and sum-of-square reconstruction method. Black-blood three-dimensional images at around 200 mum resolution were produced without banding artifact throughout the cardiac cycle. High contrast to noise made it possible to estimate cavity volumes during diastole and systole. Right and left ventricular stroke volume was significantly higher in hypoxic mice vs controls (20.2 +/- 2 vs 15.1 +/- 2; P < 0.05, 24.9 +/- 2 vs 20.4 +/- 2; P < 0.05, respectively). In conclusion, four-dimensional black-blood TrueFISP imaging in living mice is a method of choice to investigate cardiac abnormalities in mouse models.


Assuntos
Algoritmos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Animais , Feminino , Aumento da Imagem/métodos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
18.
Biochem J ; 414(3): 391-7, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18498244

RESUMO

We used (31)P MRS (magnetic resonance spectroscopy) measurements of energetic intermediates [ATP, P(i) and PCr (phosphocreatine)] in combination with the analytical tools of metabolic control analysis to study in vivo energy metabolism in the contracting skeletal muscle of anaesthetized rats over a broad range of workload. According to our recent MoCA (modular control analysis) used to describe regulatory mechanisms in beating heart, we defined the energetic system of muscle contraction as two modules (PCr-Producer and PCr-Consumer) connected by the energetic intermediates. Hypoxia and electrical stimulation were used in this in vivo study as reasonably selective modulations of Producer and Consumer respectively. As quantified by elasticity coefficients, the sensitivities of each module to PCr determine the control of steady-state contractile activity and metabolite concentrations. The magnitude of the elasticity of the producer was high (4.3+/-0.6) at low workloads and decreased 5-fold (to 0.9+/-0.2) at high workloads. By contrast, the elasticity of the consumer remained low (0.5-1.2) over the range of metabolic rates studied. The control exerted by each module over contraction was calculated from these elasticities. The control of contraction was found on the consumer at low workloads and then swung to the producer, due to the workload-dependent decrease in the elasticity of producer. The workload-dependent elasticity and control pattern of energy production in muscle is a major difference from heart. Since module rate and elasticity depend on the concentrations of substrates and products, the absence of homoeostasis of the energetic intermediates in muscle, by contrast with heart, is probably the origin of the workload-dependent elasticity of the producer module.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Animais , Elasticidade , Feminino , Espectroscopia de Ressonância Magnética , Músculo Esquelético/metabolismo , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Isótopos de Fósforo/metabolismo , Ratos
19.
Hum Mov Sci ; 67: 102518, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542675

RESUMO

Fluctuations in cyclic tasks periods is a known characteristic of human motor control. Specifically, long-range fractal fluctuations have been evidenced in the temporal structure of these variations in human locomotion and thought to be the outcome of a multicomponent physiologic system in which control is distributed across intricate cortical, spinal and neuromuscular regulation loops. Combined with long-range correlation analyses, short-range autocorrelations have proven their use to describe control distribution across central and motor components. We used relevant tools to characterize long- and short-range correlations in revolution time series during cycling on an ergometer in 19 healthy young adults. We evaluated the impact of introducing a cognitive task (PASAT) to assess the role of central structures in control organization. Autocorrelation function and detrending fluctuation analysis (DFA) demonstrated the presence of fractal scaling. PSD in the short range revealed a singular behavior which cannot be explained by the usual models of even-based and emergent timing. The main outcomes are that (1) timing in cycling is a fractal process, (2) this long-range fractal behavior increases in persistence with dual-task condition, which has not been previously observed, (3) short-range behavior is highly persistent and unaffected by dual-task. Relying on the inertia of the oscillator may be a way to distribute more control to the periphery, thereby allocating less resources to central process and better managing additional cognitive demands. This original behavior in cycling may explain the high short-range persistence unaffected by dual-task, and the increase in long-range persistence with dual-task.


Assuntos
Ciclismo/fisiologia , Cognição/fisiologia , Adulto , Feminino , Fractais , Humanos , Locomoção , Desempenho Psicomotor/fisiologia , Adulto Jovem
20.
Sci Rep ; 9(1): 18190, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796856

RESUMO

Many people experience mild stress in modern society which raises the need for an improved understanding of psychophysiological responses to stressors. Heart rate variability (HRV) may be associated with a flexible network of intricate neural structures which are dynamically organized to cope with diverse challenges. HRV was obtained in thirty-three healthy participants performing a cognitive task both with and without added stressors. Markers of neural autonomic control and neurovisceral complexity (entropy) were computed from HRV time series. Based on individual anxiety responses to the experimental stressors, two subgroups were identified: anxiety responders and non-responders. While both vagal and entropy markers rose during the cognitive task alone in both subgroups, only entropy decreased when stressors were added and exclusively in anxiety responders. We conclude that entropy may be a promising marker of cognitive tasks and acute mild stress. It brings out a new central question: why is entropy the only marker affected by mild stress? Based on the neurovisceral integration model, we hypothesized that neurophysiological complexity may be altered by mild stress, which is reflected in entropy of the cardiac output signal. The putative role of the amygdala during mild stress, in modulating the complexity of a coordinated neural network linking brain to heart, is discussed.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Frequência Cardíaca/fisiologia , Coração/fisiologia , Estresse Fisiológico/fisiologia , Adaptação Psicológica/fisiologia , Adulto , Ansiedade/fisiopatologia , Sistema Nervoso Autônomo/fisiologia , Entropia , Feminino , Humanos , Masculino , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA