Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(4-5): 457-469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38097853

RESUMO

Mercury (Hg) endangers human and wildlife health globally, primarily due to its release from artisanal small-scale gold mining (ASGM). During gold extraction, Hg is emitted into the environment and converted to highly toxic methylmercury by microorganisms. In Madre de Dios (MDD), Peru, ASGM dominates the economy and has transformed rainforests into expansive deforested areas punctuated by abandoned mining ponds. The aim of this study was to evaluate the use of bats as bioindicators for mercury pollution intensity in tropical terrestrial ecosystems impacted by ASGM. We collected 290 bat fur samples from three post-ASGM sites and one control site in Madre de Dios. Our results showed a wide Hg distribution in bats (0.001 to 117.71 mg/kg) strongly influenced by feeding habits. Insectivorous and piscivorous bats from ASGM sites presented elevated levels of Hg surpassing the mercury small mammal threshold for small mammals (10 mg/kg). We observed the highest reported fur mercury concentrations for insectivorous Neotropical bats reported to date (Rhynchonycteris naso, 117 mg/kg). Our findings further confirm that Hg emissions from ASGM are entering local food webs and exposing wildlife species at several trophic levels to higher levels of Hg than in areas not impacted by mining. We also found that three bat genera consistently showed increased Hg levels in ASGM sites relative to controls indicating potential usefulness as bioindicators of mercury loading in terrestrial ecosystems impacted by artisanal and small-scale gold mining.


Assuntos
Bioacumulação , Quirópteros , Ecossistema , Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Animais , Quirópteros/metabolismo , Peru , Mercúrio/análise , Mercúrio/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/análise
2.
Ecotoxicology ; 33(4-5): 472-483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363482

RESUMO

Artisanal and Small-Scale Gold Mining (ASGM) represents a significant source of anthropogenic mercury emissions to the environment, with potentially severe implications for avian biodiversity. In the Madre de Dios department of the southern Peruvian Amazon, ASGM activities have created landscapes marred by deforestation and post-mining water bodies (mining ponds) with notable methylation potential. While data on Hg contamination in terrestrial wildlife remains limited, this study measures Hg exposure in several terrestrial bird species as bioindicators. Total Hg (THg) levels in feathers from birds near water bodies, including mining ponds associated with ASGM areas and oxbow lakes, were analyzed. Our results showed significantly higher Hg concentrations in birds from ASGM sites with mean ± SD of 3.14 ± 7.97 µg/g (range: 0.27 to 72.75 µg/g, n = 312) compared to control sites with a mean of 0.47 ± 0.42 µg/g (range: 0.04 to 1.89 µg/g, n = 52). Factors such as trophic guilds, ASGM presence, and water body area significantly influenced feather Hg concentrations. Notably, piscivorous birds exhibited the highest Hg concentration (31.03 ± 25.25 µg/g, n = 12) exceeding known concentrations that affect reproductive success, where one measurement of Chloroceryle americana (Green kingfisher; 72.7 µg/g) is among the highest ever reported in South America. This research quantifies Hg exposure in avian communities in Amazonian regions affected by ASGM, highlighting potential risks to regional bird populations.


Assuntos
Aves , Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Animais , Mercúrio/análise , Peru , Plumas/química , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Exposição Ambiental
3.
J Environ Manage ; 288: 112364, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774565

RESUMO

Gold mining is the largest source of mercury (Hg) pollution worldwide. The discharge of mercury in the environment bears direct human health risks and is likely to increase cascading effects throughout local food chains. In the Peruvian Amazon the mining process consists of slashing and burning trees, followed by extraction of gold-bearing sediment, amalgamation with Hg and gold recovery, leading each year to the degradation of 6,000-10,000 ha and the release of 180 metric tons of Hg per year to the enviroment. The purpose of this study was to determine soil Hg levels in soils of abandoned alluvial gold mine spoils and undisturbed forest in the Madre de Dios region, the epicenter of alluvial gold mining in Peru. We selected gold mine spoils of the two most important technologies locally applied for gold extraction, i.e., Minimally Mechanized Mining (MMM) and Highly Mechanized Mining (HMM), in the native communities of Laberinto and Kotzimba, respectively. We collected 127 and 35 soil samples (0-20cm depth) from potentially contaminated sites and undisturbed forest, respectively. Physicochemical analysis and determination of Hg levels were determined for all soil samples. None of the samples had Hg concentrations above Peruvian, Canadian and British Environmental Quality Standards for Agricultural Soil (6.6mg/kg). Hg levels in MMM and HMM were not significantly different between the two areas. The main variables explaining variation of soil Hg concentrations were the vegetation cover, soil organic matter, soil pH and clay particle content, which explained up to 80% of data set variation. Surprisingly, highest Hg concentrations were found in untouched old-growth forest bordering the mine spoils, but there was also a trend of increasing Hg concentrations with the regenerating vegetation. Our findings suggest that Hg concentrations in old mine spoils are low and shouldn't stand in the way of efforts to restore soil conditions and develop sustainable land uses. However, it is urgent to end the use of Hg in mining operation to decrease human and environmental risks.


Assuntos
Mercúrio , Poluentes do Solo , Canadá , Monitoramento Ambiental , Ouro , Humanos , Mercúrio/análise , Mineração , Peru , Solo , Poluentes do Solo/análise
5.
Acta amaz ; 34(2): 265-273, 2004. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-394086

RESUMO

Foi estudada a dispersão de sementes de Hymenaea courbaril, seguindo o destino de 585 sementes marcadas com imãs e expostas a potenciais dispersores, colocadas em agregados no interior e próximo de uma faixa de floresta cortada, na Amazónia peruana. Mamíferos retiraram frutos de todos os agregados, localizados no interior da floresta, na sua borda, e na clareira. As taxas de remoção foram baixas - mediana de 8.1 frutos/mês em agregados mantidos com 8-10 frutos - mas foram mais altas em agosto que nos primeiros meses do ano. A maior parte dos frutos foi abandonada próxima do agregado de origem ou as suas sementes foram consumidas, mas > 13% foram dispersos com sucesso. A maior parte das sementes dispersas foi enterrada, o que favorece a germinação. A distância máxima de dispersão de sementes vivas foi de 12.1 m (mediana 3.1 m), mas outros imãs foram transportados até 34 m, indicando que as sementes foram dispersas mais longe, mas foram consumidas depois. Cutiaras (muito provavelmente Myoprocta pratti) e cutias (Dasyprocta fuliginosa) parecem ter sido os principais agentes de dispersão. A dispersão de sementes da floresta para o interior da clareira foi rara, sugerindo que apesar de alguns roedores dispersarem H. courbaril, não se pode ficar dependente deles para o repovoamento desta e de outras espécies em clareiras recentes.


Assuntos
Comportamento Predatório , Dasyproctidae , Fabaceae , Indicadores de Gestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA