Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(4): H553-H570, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36827229

RESUMO

Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.


Assuntos
Aterosclerose , Vesículas Extracelulares , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Camundongos , Animais , Caveolina 1/metabolismo , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Receptores ErbB/genética , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Aterosclerose/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
J Vis Exp ; (191)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36779615

RESUMO

Cardiovascular disease is the leading cause of death in the world, and vascular calcification is the most significant predictor of cardiovascular events; however, there are currently no treatment or therapeutic options for vascular calcification. Calcification begins within specialized extracellular vesicles (EVs), which serve as nucleating foci by aggregating calcium and phosphate ions. This protocol describes methods for obtaining and assessing calcification in murine aortas and analyzing the associated extracted EVs. First, gross dissection of the mouse is performed to collect any relevant organs, such as the kidneys, liver, and lungs. Then, the murine aorta is isolated and excised from the aortic root to the femoral artery. Two to three aortas are then pooled and incubated in a digestive solution before undergoing ultracentrifugation to isolate the EVs of interest. Next, the mineralization potential of the EVs is determined through incubation in a high-phosphate solution and measuring the light absorbance at a wavelength of 340 nm. Finally, collagen hydrogels are used to observe the calcified mineral formation and maturation produced by the EVs in vitro.


Assuntos
Vesículas Extracelulares , Calcificação Vascular , Camundongos , Animais , Aorta , Cálcio , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA