Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35962608

RESUMO

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Assuntos
Mirtilos Azuis (Planta) , Tetraploidia , Mirtilos Azuis (Planta)/genética , Padrões de Herança , Poliploidia , Cromossomos
2.
Am J Bot ; 109(10): 1596-1606, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109839

RESUMO

PREMISE: The true blueberries (Vaccinium sect. Cyanococcus; Ericaceae), endemic to North America, have been intensively studied for over a century. However, with species estimates ranging from nine to 24 and much confusion regarding species boundaries, this ecologically and economically valuable group remains inadequately understood at a basic evolutionary and taxonomic level. As a first step toward understanding the evolutionary history and taxonomy of this species complex, we present the first phylogenomic hypothesis of the known diploid blueberries. METHODS: We used flow cytometry to verify the ploidy of putative diploid taxa and a target-enrichment approach to obtain a genomic data set for phylogenetic analyses. RESULTS: Despite evidence of gene flow, we found that a primary phylogenetic signal is present. Monophyly for all morphospecies was recovered, with two notable exceptions: one sample of V. boreale was consistently nested in the V. myrtilloides clade and V. caesariense was nested in the V. fuscatum clade. One diploid taxon, Vaccinium pallidum, is implicated as having a homoploid hybrid origin. CONCLUSIONS: This foundational study represents the first attempt to elucidate evolutionary relationships of the true blueberries of North America with a phylogenomic approach and sets the stage for multiple avenues of future study such as a taxonomic revision of the group, the verification of a homoploid hybrid taxon, and the study of polyploid lineages within the context of a diploid phylogeny.


Assuntos
Mirtilos Azuis (Planta) , Vaccinium , Filogenia , Diploide , Poliploidia
3.
BMC Genomics ; 22(1): 483, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182921

RESUMO

BACKGROUND: Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS: During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION: Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae , Perfilação da Expressão Gênica , Inflorescência , Melhoramento Vegetal
4.
5.
PLoS Genet ; 12(5): e1006012, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168520

RESUMO

Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium/genética , Tetraploidia , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fibra de Algodão , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Poliploidia
6.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23257886

RESUMO

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Assuntos
Evolução Biológica , Fibra de Algodão , Genoma de Planta/genética , Gossypium/genética , Poliploidia , Alelos , Cacau/genética , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica/genética , Genes de Plantas/genética , Gossypium/classificação , Anotação de Sequência Molecular , Filogenia , Vitis/genética
7.
Plant Dis ; 99(5): 718-722, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-30699677

RESUMO

Breeding for disease resistance requires efficient techniques for screening large plant populations. Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide, and there is a great interest in developing cultivars with resistance to this pathogen. Screening for LB resistance is commonly conducted under field or greenhouse conditions using whole plants. In a previous study, we demonstrated correspondence between field and greenhouse screening of tomato for LB resistance. Here, we report the use of a detached-leaflet assay for such screening. Seventy-two genotypes from two tomato species, varying in degree of resistance and susceptibility to LB, were evaluated in two replicated experiments for response to LB in a detached-leaflet assay, and the results were compared with those previously obtained from field and greenhouse screening of the same genotypes. There were significant (P < 0.001) positive correlations between replications (average r = 0.75) and experiments (average r = 0.72), suggesting that the detached-leaflet experiments were consistent. Further, there were significant (P < 0.001) positive correlations between responses in the detached-leaflet assay and those from field (r = 0.82) and greenhouse screenings (r = 0.84), suggesting reliability of the detached-leaflet assay. The results indicate the utility of the detached-leaflet assay for evaluating tomato for LB resistance, which may facilitate screening of large breeding populations.

8.
BMC Genomics ; 15: 945, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359292

RESUMO

BACKGROUND: Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. RESULTS: Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3-79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. CONCLUSIONS: This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development.


Assuntos
Cruzamento , Mapeamento Cromossômico , Genes de Plantas , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas , Biologia Computacional , Cruzamentos Genéticos , Marcadores Genéticos , Genoma de Planta , Técnicas de Genotipagem , Reprodutibilidade dos Testes , Deleção de Sequência , Transcriptoma
9.
Biol Trace Elem Res ; 202(5): 2052-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37540448

RESUMO

This study was conducted to evaluate the effects of different doses of selenium (Se) from Sel-Plex© (selenium-enriched Saccharomyces cerevisiae yeast) supplement on the antioxidant status, the antibody titers against the foot-and-mouth disease virus, and the expression of interleukin-2 (IL-2) and interferon-γ (IFN-γ) genes in ewes during the hot season. Six ewes were kept at 25 °C and received basal diet (the negative control group), and 24 ewes were kept at 38 °C for 5 h per day and received no supplement (the positive control), 0.15, 0.30, and 0.45 mg Se/kg. Ewes in the positive control had higher (P<0.001) liver enzyme activity, malondialdehyde (MDA), and cortisol levels, and lower antibody titer than the negative control. The liver enzymes' lowest (P<0.001) activities were observed in ewes receiving 0.30 and 0.45 mg Se/kg. Ewes receiving 0.30 and 0.45 mg Se/kg had lower MDA levels than other treatments. Ewes receiving 0.30 and 0.45 mg Se/kg had higher (P<0.001) total antioxidant capacity levels than those receiving 0.15 mg Se/kg and the positive control. Se-supplemented groups had lower (P<0.001) relative expression of IL-2 and higher (P<0.04) expression of IFN-γ than the positive control. The antibody titer was the same in the positive control and the group receiving 0.15 mg Se/kg. Ewes fed a diet with 0.30 and 0.45 mg Se/kg had higher (P<0.011) antibody titer than the positive control. The Se supplementation can reverse the decrease of antioxidant capacity and immune function caused by heat stress, and 0.3 mg Se/kg from Sel-Plex©is the best dose.


Assuntos
Antioxidantes , Selênio , Animais , Ovinos , Feminino , Antioxidantes/farmacologia , Selênio/farmacologia , Selênio/fisiologia , Interleucina-2/genética , Interferon gama/genética , Estações do Ano , Suplementos Nutricionais , Dieta , Saccharomyces cerevisiae , Imunidade , Ração Animal/análise
10.
Genome ; 56(1): 61-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23379339

RESUMO

Quantitative trait loci (QTL) analyses in pepper are common for horticultural, disease resistance, and fruit quality traits; although none of the studies to date have used sequence-based markers associated with genes. In this study we measured plant architectural, phenological, and fruit quality traits in a pepper mapping population consisting of 92 recombinant inbred lines derived from a cross between Capsicum frutescens acc. 2814-6 and C. annuum var. NuMexRNAKY. Phenotypic measurements were correlated to loci in a high-density EST-based genetic map. In total, 96 QTL were identified for 38 traits, including 12 QTL associated with capsaicinoid levels. Twenty-one loci showed correlation among seemingly unrelated phenotypic categories, highlighting tight linkage or shared genetics between previously unassociated traits in pepper.


Assuntos
Capsaicina/análise , Capsicum/genética , Frutas/genética , Locos de Características Quantitativas , Capsicum/química , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Genes de Plantas , Endogamia , Fenótipo , Mapeamento Físico do Cromossomo
11.
Front Plant Sci ; 14: 1182790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351206

RESUMO

Introduction: Blackberry (Rubus subgenus Rubus) is a soft-fruited specialty crop that often suffers economic losses due to degradation in the shipping process. During transportation, fresh-market blackberries commonly leak, decay, deform, or become discolored through a disorder known as red drupelet reversion (RDR). Over the past 50 years, breeding programs have achieved better fruit firmness and postharvest quality through traditional selection methods, but the underlying genetic variation is poorly understood. Methods: We conducted a genome-wide association of fruit firmness and RDR measured in 300 tetraploid fresh-market blackberry genotypes from 2019-2021 with 65,995 SNPs concentrated in genic regions of the R. argutus reference genome. Results: Fruit firmness and RDR had entry-mean broad sense heritabilities of 68% and 34%, respectively. Three variants on homologs of polygalacturonase (PG), pectin methylesterase (PME), and glucan endo-1,3-ß-glucosidase explained 27% of variance in fruit firmness and were located on chromosomes Ra06, Ra01, and Ra02, respectively. Another PG homolog variant on chromosome Ra02 explained 8% of variance in RDR, but it was in strong linkage disequilibrium with 212 other RDR-associated SNPs across a 23 Mb region. A large cluster of six PME and PME inhibitor homologs was located near the fruit firmness quantitative trait locus (QTL) identified on Ra01. RDR and fruit firmness shared a significant negative correlation (r = -0.28) and overlapping QTL regions on Ra02 in this study. Discussion: Our work demonstrates the complex nature of postharvest quality traits in blackberry, which are likely controlled by many small-effect QTLs. This study is the first large-scale effort to map the genetic control of quantitative traits in blackberry and provides a strong framework for future GWAS. Phenotypic and genotypic datasets may be used to train genomic selection models that target the improvement of postharvest quality.

12.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37565490

RESUMO

Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Genótipo , Genômica/métodos , Fenótipo
13.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36331334

RESUMO

Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.


Assuntos
Rubus , Rubus/genética , Tetraploidia , Melhoramento Vegetal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Anotação de Sequência Molecular
14.
BMC Genomics ; 13: 571, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110314

RESUMO

BACKGROUND: Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes. RESULTS: Two pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80-120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were designed for the identified markers. The assembly was annotated by Blast2GO and 14,740 (12%) of annotated contigs were associated with functional proteins. CONCLUSIONS: Before availability of pepper genome sequence, assembling transcriptomes of this economically important crop was required to generate thousands of high-quality molecular markers that could be used in breeding programs. In order to have a better understanding of the assembled sequences and to identify candidate genes underlying QTLs, we annotated the contigs of Sanger-EST and Illumina transcriptome assemblies. These and other information have been curated in a database that we have dedicated for pepper project.


Assuntos
Capsicum/genética , Capsicum/metabolismo , Embaralhamento de DNA/métodos , Bases de Dados Genéticas , Proteômica/métodos , Transcriptoma/genética , Etiquetas de Sequências Expressas , Estudos de Associação Genética/métodos , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética
15.
BMC Genomics ; 13: 185, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583801

RESUMO

BACKGROUND: High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). RESULTS: We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. CONCLUSION: By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously.


Assuntos
Lactuca/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Algoritmos , Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Genoma de Planta , Filogenia
16.
Plant Genome ; 15(4): e20251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962567

RESUMO

Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato (Solanum lycopersicum L.) and potato (Solanum tuberosum L.) worldwide. Genetic changes in the pathogen have resulted in the emergence of new genotypes, overcoming formerly effective fungicides or host resistance genes. We previously reported the identification of a LB-resistant accession (PI 270441) of the wild tomato species S. pimpinellifolium L. and the high heritability of its resistance. In the present study, an F2 population (n = 1,209), derived from a cross between PI 270441 and a LB-susceptible tomato breeding line (Fla. 8059), was screened for response to LB infection. Extreme resistant (n = 44) and susceptible (n = 39) F2 individuals were selected and used in a trait-based marker analysis (TBA; a.k.a selective genotyping) to identify and map quantitative trait loci (QTLs) conferring LB resistance. Reduced representation libraries (RRLs) of Fla. 8059 and PI 270441 were constructed, sequenced, and mapped to the tomato genome. A total of 13,054 single-nucleotide polymorphisms (SNPs) were identified, of which, 200 were used to construct a genetic linkage map and locate QTLs. Four LB resistance QTLs were identified on chromosomes 1, 10, and 11 of PI 270441. The markers associated with these QTLs can be used to transfer LB resistance from PI 270441 into new tomato cultivars and to develop near-isogenic lines for fine mapping of the QTL.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Locos de Características Quantitativas , Solanum/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Phytophthora infestans/genética , Solanum lycopersicum/genética , Solanum tuberosum/genética
17.
Hortic Res ; 9: uhac083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611183

RESUMO

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

18.
BMC Genomics ; 12: 389, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810238

RESUMO

BACKGROUND: Among next generation sequence technologies, platforms such as Illumina and SOLiD produce short reads but with higher coverage and lower cost per sequenced nucleotide than 454 or Sanger. A challenge now is to develop efficient strategies to use short-read length platforms for de novo assembly and marker development. The scope of this study was to develop a de novo assembly of carrot ESTs from multiple genotypes using the Illumina platform, and to identify polymorphisms. RESULTS: A de novo assembly of transcriptome sequence from four genetic backgrounds produced 58,751 contigs and singletons. Over 50% of these assembled sequences were annotated allowing detection of transposable elements and new carrot anthocyanin genes. Presence of multiple genetic backgrounds in our assembly allowed the identification of 114 computationally polymorphic SSRs, and 20,058 SNPs at a depth of coverage of 20× or more. Polymorphisms were predominantly between inbred lines except for the cultivated x wild RIL pool which had high intra-sample polymorphism. About 90% and 88% of tested SSR and SNP primers amplified a product, of which 70% and 46%, respectively, were of the expected size. Out of verified SSR and SNP markers 84% and 82% were polymorphic. About 25% of SNPs genotyped were polymorphic in two diverse mapping populations. CONCLUSIONS: This study confirmed the potential of short read platforms for de novo EST assembly and identification of genetic polymorphisms in carrot. In addition we produced the first large-scale transcriptome of carrot, a species lacking genomic resources.


Assuntos
Daucus carota/genética , Etiquetas de Sequências Expressas , Variação Genética , Transcriptoma , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Marcadores Genéticos , Genótipo , Íntrons , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
19.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33598705

RESUMO

Mummy berry disease, caused by the fungal pathogen Monilinia vaccinii-corymbosi (Mvc), is one of the most economically important diseases of blueberries in North America. Mvc is capable of inducing two separate blighting stages during its life cycle. Infected fruits are rendered mummified and unmarketable. Genomic data for this pathogen is lacking, but could be useful in understanding the reproductive biology of Mvc and the mechanisms it deploys to facilitate host infection. In this study, PacBio sequencing and Hi-C interaction data were utilized to create a chromosome-scale reference genome for Mvc. The genome comprises nine chromosomes with a total length of 30 Mb, an N50 length of 4.06 Mb, and an average 413X sequence coverage. A total of 9399 gene models were predicted and annotated, and BUSCO analysis revealed that 98% of 1,438 searched conserved eukaryotic genes were present in the predicted gene set. Potential effectors were identified, and the mating-type (MAT) locus was characterized. Biotrophic effectors allow the pathogen to avoid recognition by the host plant and evade or mitigate host defense responses during the early stages of fruit infection. Following locule colonization, necrotizing effectors promote the mummification of host tissues. Potential biotrophic effectors utilized by Mvc include chorismate mutase for reducing host salicylate and necrotrophic effectors include necrosis-inducing proteins and hydrolytic enzymes for macerating host tissue. The MAT locus sequences indicate the potential for homothallism in the reference genome, but a deletion allele of the MAT locus, characterized in a second isolate, indicates heterothallism. Further research is needed to verify the roles of individual effectors in virulence and to determine the role of the MAT locus in outcrossing and population genotypic diversity.


Assuntos
Ascomicetos/genética , Mirtilos Azuis (Planta) , Doenças das Plantas , Frutas , América do Norte , Doenças das Plantas/microbiologia
20.
Hortic Res ; 8(1): 169, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333532

RESUMO

Fruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, 'Reveille' and 'Arlen', were phenotyped over three years (2016-2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8-13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA