Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 294, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996952

RESUMO

RATIONALE: Severe asthma affects a small proportion of asthmatics but represents a significant healthcare challenge. Bronchial thermoplasty (BT) is an interventional treatment approach preconized for uncontrolled severe asthma after considering biologics therapy. It was showed that BT long-lastingly improves asthma control. These improvements seem to be related to the ability of BT to reduce airway smooth muscle remodeling, reduce the number of nerve fibers and to modulate bronchial epithelium integrity and behavior. Current evidence suggest that BT downregulates epithelial mucins expression, cytokine production and metabolic profile. Despite these observations, biological mechanisms explaining asthma control improvement post-BT are still not well understood. OBJECTIVES: To assess whether BT affects gene signatures in bronchial epithelial cells (BECs). METHODS: In this study we evaluated the transcriptome of cultured bronchial epithelial cells (BECs) of severe asthmatics obtained pre- and post-BT treatment using microarrays. We further validated gene and protein expressions in BECs and in bronchial biopsies with immunohistochemistry pre- and post-BT treatment. MEASUREMENTS AND MAIN RESULTS: Transcriptomics analysis revealed that a large portion of differentially expressed genes (DEG) was involved in anti-viral response, anti-microbial response and pathogen induced cytokine storm signaling pathway. S100A gene family stood out as five members of this family where consistently downregulated post-BT. Further validation revealed that S100A7, S100A8, S100A9 and their receptor (RAGE, TLR4, CD36) expressions were highly enriched in severe asthmatic BECs. Further, these S100A family members were downregulated at the gene and protein levels in BECs and in bronchial biopsies of severe asthmatics post-BT. TLR4 and CD36 protein expression were also reduced in BECs post-BT. Thymic stromal lymphopoietin (TSLP) and human ß-defensin 2 (hBD2) were significantly decreased while no significant change was observed in IL-25 and IL-33. CONCLUSIONS: These data suggest that BT might improve asthma control by downregulating epithelial derived S100A family expression and related downstream signaling pathways.


Assuntos
Asma , Termoplastia Brônquica , Humanos , Linfopoietina do Estroma do Timo , Alarminas , Receptor 4 Toll-Like , Asma/genética , Asma/cirurgia , Asma/metabolismo , Citocinas/metabolismo
2.
BMC Biol ; 20(1): 8, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996449

RESUMO

BACKGROUND: The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS: We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS: Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.


Assuntos
Bacteriófagos , Células-Tronco Pluripotentes Induzidas , Alelos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Conversão Gênica , Edição de Genes/métodos , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA/metabolismo , Retroviridae/genética
3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569398

RESUMO

Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Transcriptoma , Células Epiteliais , Epitélio , Interferons/genética , Mucosa Respiratória
4.
Biochem Biophys Res Commun ; 604: 151-157, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35305419

RESUMO

As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.


Assuntos
Bronquíolos , Citometria de Fluxo , Perfilação da Expressão Gênica , RNA Mensageiro , Uteroglobina , Bronquíolos/citologia , Citometria de Fluxo/métodos , Formaldeído , Perfilação da Expressão Gênica/métodos , Humanos , Inclusão em Parafina , RNA Mensageiro/isolamento & purificação , Fixação de Tecidos/métodos , Transcriptoma , Uteroglobina/química
5.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328521

RESUMO

Platelets are small anucleate cells derived from the fragmentation of megakaryocytes and are involved in different biological processes especially hemostasis, thrombosis, and immune response. Despite their lack of nucleus, platelets contain a reservoir of megakaryocyte-derived RNAs and all the machinery useful for mRNA translation. Interestingly, platelet transcriptome was analyzed in health and diseases and led to the identification of disease-specific molecular signatures. Platelet contamination by leukocytes and erythrocytes during platelet purification is a major problem in transcriptomic analysis and the presence of few contaminants in platelet preparation could strongly alter transcriptome results. Since contaminant impacts on platelet transcriptome remains theoretical, we aimed to determine whether low leukocyte and erythrocyte contamination could cause great or only minor changes in platelet transcriptome. Using microarray technique, we compared the transcriptome of platelets from the same donor, purified by common centrifugation method or using magnetic microbeads to eliminate contaminating cells. We found that platelet transcriptome was greatly altered by contaminants, as the relative amount of 8274 transcripts was different between compared samples. We observed an increase of transcripts related to leukocytes and erythrocytes in platelet purified without microbeads, while platelet specific transcripts were falsely reduced. In conclusion, serious precautions should be taken during platelet purification process for transcriptomic analysis, in order to avoid platelets contamination and result alteration.


Assuntos
Plaquetas , Transcriptoma , Perfilação da Expressão Gênica , Leucócitos , Megacariócitos
6.
Mol Cancer ; 20(1): 30, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557844

RESUMO

The characterization of circulating tumor cells (CTCs) holds promises for precision medicine because these cells are an important clinical indicator of treatment efficacy. We established the first and still only nine permanent colon CTC lines from peripheral blood samples of a patient with metastatic colon cancer collected at different time points during treatment and cancer progression. The study objectives were (i) to compare the gene expression profiles of these CTC lines, and (ii) to determine the main features acquired during treatment. The number of upregulated genes was higher in the CTC lines obtained after treatment, indicating that they acquired properties to escape treatment pressure. Among these upregulated genes, some are involved in the mTOR and PI3K/AKT signaling pathways. Moreover, cytidine deaminase expression was significantly increased in the CTC lines obtained after failure of the first- and second-line 5-fluorouracile-based treatments, suggesting that these CTCs can eliminate this specific drug and resist to therapy. Several enzymes involved in xenobiotic metabolism also were upregulated after treatment, suggesting the activation of detoxification mechanisms in response to chemotherapy. Finally, the significant higher expression of aldolase B in four of the six CTC lines obtained after treatment withdrawal and cancer progression indicated that these clones originated from liver metastases. In conclusion, these CTC lines generated at different time points during treatment of metastatic colon cancer in a single patient are characterized by the deregulation of different genes that promote (i) drug resistance, (ii) xenobiotic and energy metabolism, and (iii) stem cell properties and plasticity.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo/genética , Resistencia a Medicamentos Antineoplásicos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Transcriptoma
7.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639189

RESUMO

We analyzed transcriptomic data from otic sensory cells differentiated from human induced pluripotent stem cells (hiPSCs) by a previously described method to gain new insights into the early human otic neurosensory lineage. We identified genes and biological networks not previously described to occur in the human otic sensory developmental cell lineage. These analyses identified and ranked genes known to be part of the otic sensory lineage program (SIX1, EYA1, GATA3, etc.), in addition to a number of novel genes encoding extracellular matrix (ECM) (COL3A1, COL5A2, DCN, etc.) and integrin (ITG) receptors (ITGAV, ITGA4, ITGA) for ECM molecules. The results were confirmed by quantitative PCR analysis of a comprehensive panel of genes differentially expressed during the time course of hiPSC differentiation in vitro. Immunocytochemistry validated results for select otic and ECM/ITG gene markers in the in vivo human fetal inner ear. Our screen shows ECM and ITG gene expression changes coincident with hiPSC differentiation towards human otic neurosensory cells. Our findings suggest a critical role of ECM-ITG interactions with otic neurosensory lineage genes in early neurosensory development and cell fate determination in the human fetal inner ear.


Assuntos
Diferenciação Celular , Orelha Interna/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transcriptoma , Linhagem da Célula , Orelha Interna/metabolismo , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
8.
Stem Cells ; 36(6): 814-821, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29441649

RESUMO

Human induced pluripotent stem cells (hiPSCs) have the potential to differentiate virtually into any cell type in unlimited quantities. Therefore, they are ideal for in vitro tissue modeling or to produce cells for clinical use. Importantly, and differently from immortalized and cancer cell lines, the hiPSC genome scrupulously reproduces that of the cell from which they were derived. However, hiPSCs can develop genetic abnormalities during reprogramming or prolonged cell culture, such as aneuploidies or oncogenic mutations (e.g., in TP53). Therefore, hiPSC genome integrity must be routinely monitored because serious genome alterations would greatly compromise their usefulness or safety of use. Here, we reviewed hiPSC genome quality control monitoring methods and laboratory practice. Indeed, due to their frequency and functional consequences, recurrent genetic defects found in cultured hiPSCs are inacceptable and their appearance should be monitored by routine screening. Hence, for research purposes, we propose that the genome of hiPSC lines should be systematically screened at derivation, at least by karyotyping, and then regularly (every 12 weeks) during experiments, for instance with polymerase chain reaction-based techniques. For some specific applications, such as research on aging, cell cycle, apoptosis or cancer, other tests (e.g., TP53 mutation detection) should also be included. For clinical use, in addition to karyotyping, we advise exome sequencing. Stem Cells 2018;36:814-821.


Assuntos
Genômica/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Humanos , Controle de Qualidade
9.
Am J Respir Cell Mol Biol ; 59(6): 672-683, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230352

RESUMO

Primary ciliary dyskinesia (PCD) is a rare and heterogeneous genetic disorder that affects the structure and function of motile cilia. In the airway epithelium, impaired ciliary motion results in reduced or absent mucociliary clearance that leads to the appearance of chronic airway infection, sinusitis, and bronchiectasis. Currently, there is no effective treatment for PCD, and research is limited by the lack of convenient models to study this disease and investigate innovative therapies. Furthermore, the high heterogeneity of PCD genotypes is likely to hinder the development of a single therapy for all patients. The generation of patient-derived, induced pluripotent stem cells, and their differentiation into airway epithelium, as well as genome editing technologies, could represent major tools for in vitro PCD modeling and for developing personalized therapies. Here, we review PCD pathogenesis and then discuss how human induced pluripotent stem cells could be used to model this disease for the development of innovative, patient-specific biotherapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transtornos da Motilidade Ciliar/patologia , Transtornos da Motilidade Ciliar/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Medicina de Precisão , Humanos
10.
Mol Reprod Dev ; 85(3): 271-280, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29392876

RESUMO

This study assessed sperm quality declining on relation to paternal age and its impact on in vitro fertilization (IVF) outcomes in order to estimate the APA (Advanced Paternal Age) cutoff. For this, 83 couples undergoing IVF treatment for male factor infertility were enrolled. The women age was ≤39 years, whereas the men were divided in two groups: APA (n = 41; age ≥ 40 years) and young (Y) (n = 42; age < 40 years). Conventional semen parameters (volume, concentration, motility, vitality, and morphology) were analyzed in the collected sperm samples. Furthermore, sperm genome decays (SGD) was assessed by TUNEL assay (DNA fragmentation), aniline blue staining (chromatin decondensation), and fluorescent in situ hybridization (aneuploidy). No significant difference was found concerning the conventional semen parameters between APA and Y groups. Conversely, SGD analysis showed increased DNA fragmentation; chromatin decondensation and sperm aneuploidy rates in the APA group (respectively, 41%, 43%, and 14% vs. 25%, 23%, and 4% in Y group). IVF outcomes also were affected by paternal age as indicated by the rates of cancelled embryo transfers, clinical pregnancy and miscarriage in the two groups APA and Y (29%, 17%, and 60% vs. 10%, 32%, and 42%). Finally, statistical analysis of the results suggests that the age of 40 should be considered as the APA cutoff during ART attempts.


Assuntos
Genoma , Hibridização in Situ Fluorescente , Infertilidade Masculina/genética , Idade Paterna , Espermatozoides/metabolismo , Adulto , Fatores Etários , Fragmentação do DNA , Feminino , Fertilização in vitro , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Análise do Sêmen
11.
Clin Chem ; 63(3): 700-713, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007957

RESUMO

BACKGROUND: Unraveling the molecular mechanisms that regulate the biology of metastasis-competent circulating tumor cells (CTCs) is urgently needed to understand metastasis formation and tumor relapse. Our group previously established the first cell line (CTC-MCC-41) derived from metastasis-competent CTCs of a patient with colon cancer. METHODS: In this study, we analyzed the transcriptome of CTC-MCC-41 cells using Human Genome U133 Plus 2.0 microarrays with the aim of unraveling the molecular basis of their special features (stem cell properties and ability to initiate and support metastasis formation). RESULTS: Comparison of the transcriptome data of metastasis-competent CTC-MCC-41 cells and of HT-29 cells (derived from a primary colon cancer) highlights the differential expression of genes that regulate energy metabolism [peroxisome proliferator-activated receptor γ coactivator 1A (PPARGC1A), peroxisome proliferator-activated receptor γ coactivator 1B (PPARGC1B), fatty acid binding protein 1 (FABP1), aldehyde dehydrogenase 3 family member A1 (ALDH3A1)], DNA repair [BRCA1 interacting protein C-terminal helicase 1 (BRIP1), Fanconi anemia complementation group B (FANCB), Fanconi anemia complementation group M (FANCM)], and stemness [glutaminase 2 (GLS2), cystathionine-beta-synthase (CBS), and cystathionine gamma-lyase (CTH)]. The differential expression of 20 genes was validated by quantitative reverse transcription PCR. CONCLUSIONS: This study gives a comprehensive outlook on the molecular events involved in colon cancer progression and provides potential CTC biomarkers that may help develop new therapies to specifically target CTCs with stem cell properties that cause metastases and tumor relapse in patients with colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Reparo do DNA , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Células Neoplásicas Circulantes/patologia , Análise de Sequência com Séries de Oligonucleotídeos
12.
Genes (Basel) ; 15(4)2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38674398

RESUMO

Human sperm parameters serve as a first step in diagnosing male infertility, but not in determining the potential for successful pregnancy during assisted reproductive technologies (ARTs) procedures. Here, we investigated the relationship between sperm head morphology at high magnification, based on strict morphologic criteria, and the nuclear architecture analyzed by fluorescence in situ hybridization (FISH). We included five men. Two of them had an elevated high-magnification morphology score of 6 points (Score 6) indicating high fertility potential, whereas three had a low score of 0 points (Score 0), indicating low fertility potential. We used FISH to study the inter-telomeric distance and the chromosomal territory area of chromosome 1 (Chr. 1). We then compared these two parameters between subjects with high and low scores. FISH data analysis showed that the inter-telomeric distance (ITD) and chromosomal territory area (CTA) of Chr. 1 were significantly higher in subjects with low scores (score 0) than high scores (score 6). Our results suggest that (i) there is a link between nuclear architecture and sperm head abnormalities, particularly vacuoles; and (ii) it is possible to select spermatozoa with normal nuclear architecture, which might indirectly explain the positive ART outcomes observed with this technique.


Assuntos
Núcleo Celular , Hibridização in Situ Fluorescente , Espermatozoides , Humanos , Masculino , Hibridização in Situ Fluorescente/métodos , Núcleo Celular/genética , Adulto , Cabeça do Espermatozoide , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cromossomos Humanos Par 1/genética
13.
Stem Cell Res ; 77: 103437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723411

RESUMO

Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized healthy heavy smoker male donor free from emphysema or tobacco related disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi007-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucócitos Mononucleares , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Linhagem Celular , Diferenciação Celular , Fumantes , Reprogramação Celular
14.
Hum Reprod ; 27(8): 2438-47, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22617121

RESUMO

BACKGROUND: Oocyte maturation and competence to development depends on its close relationship with cumulus cells (CCs). However, the maturation conditions of human cumulus-oocyte complexes (COCs) might affect gene expression in both oocyte and CCs. We thus compared the transcriptome profiles of CCs isolated from in vivo and in vitro matured COCs at different nuclear maturation stages. METHODS: Three groups of CCs from patients who underwent ICSI were included: CCs of patients with polycystic ovary syndrome (PCOS) referred for in vitro maturation (IVM), CCs from patients with PCOS for in vivo maturation (used as controls) and CCs from normal responders referred for in vivo maturation. CCs were isolated from COCs at the germinal vesicle, metaphase I and metaphase II stages. Microarray technology was used to analyse the global gene expression and significance analysis of microarray to compare the expression profiles of CCs from COCs at different nuclear maturation stages following IVM or in vivo maturation. Selected genes were validated by RT-qPCR. RESULTS: In CCs isolated after IVM, genes related to cumulus expansion and oocyte maturation, such as EREG, AREG and PTX3, were down-regulated, while cell cycle-related genes were up-regulated in comparison with CCs from in vivo matured COCs from PCOS and normal responder patients. Moreover, irrespective of the stage of oocyte maturation, genes involved in DNA replication, recombination and repair were up-regulated in CCs after IVM. CONCLUSIONS: The CC transcriptomic signature varies according to both the oocyte maturation stage and the maturation conditions. Our findings suggest a delay in the acquisition of the mature CC phenotype following IVM, opening a new perspective for the improvement in IVM conditions.


Assuntos
Células do Cúmulo/citologia , Regulação da Expressão Gênica , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Adulto , Técnicas de Cultura Embrionária/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Técnicas de Maturação in Vitro de Oócitos , Análise de Sequência com Séries de Oligonucleotídeos , Oogênese/fisiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/terapia , Reação em Cadeia da Polimerase/métodos , Fatores de Tempo , Transcrição Gênica
15.
Stem Cells ; 29(9): 1469-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21714037

RESUMO

Pluripotent stem cells (PSC) are functionally characterized by their capacity to differentiate into all the cell types from the three germ layers. A wide range of markers, the expression of which is associated with pluripotency, has been used as surrogate evidence of PSC pluripotency, but their respective relevance is poorly documented. Here, we compared by polychromatic flow cytometry the kinetics of loss of expression of eight widely used pluripotency markers (SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24, OCT4, NANOG, and alkaline phosphatase [AP]) at days 0, 5, 7, and 9 after induction of PSC differentiation into cells representative of the three germ layers. Strikingly, each marker showed a different and specific kinetics of disappearance that was similar in all the PSC lines used and for all the induced differentiation pathways. OCT4, SSEA3, and TRA-1-60 were repeatedly the first markers to be downregulated, and their expression was completely lost at day 9. By contrast, AP activity, CD24, and NANOG proteins were still detectable at day 9. In addition, we show that differentiation markers are coexpressed with pluripotency markers before the latter begin to disappear. These results suggest that OCT4, SSEA3, and TRA-1-60 might be better to trace in vitro the emergence of pluripotent cells during reprogramming.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes/fisiologia
16.
Reprod Biomed Online ; 24(1): 23-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22119322

RESUMO

The appreciation of endometrial receptivity is a crucial step in assisted reproductive technology as implantation failures are thought to result, in large part, from abnormal endometrial receptivity. Using emerging omics technologies, investigators have begun to define both molecular signatures and specific biomarkers of receptive endometrium. The aim of this review was to analyse the new perspectives brought to the appreciation of endometrial receptivity by transcriptomic and proteomic technologies, involving the analysis of gene- or protein-expression-profile shifts between the pre-receptive and receptive secretory stages and how they might lead to new strategies for endometrial receptivity assessments. The use of omics as molecular tools to determine the effects of stimulation protocols on endometrial gene expression and clinical outcomes has also been investigated.


Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica , Proteômica/métodos , Transcrição Gênica , Biomarcadores/metabolismo , Biópsia , Implantação do Embrião , Feminino , Fertilização in vitro/métodos , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Fenótipo , Gravidez
17.
Cells ; 11(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954266

RESUMO

Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença Pulmonar Obstrutiva Crônica , Epitélio/metabolismo , Humanos , Leucócitos Mononucleares/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/patologia
18.
Reproduction ; 141(5): 549-61, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21339285

RESUMO

In women, up to 99.9% of the oocyte stockpile formed during fetal life is decimated by apoptosis. Apoptotic features are also detected in human preimplantation embryos both in vivo and in vitro. Despite the important consequences of cell death processes to oocyte competence and early embryonic development, little is known about its genetic and molecular control. B cell lymphoma-2 (BCL2) family proteins are major regulators of cell death and survival. Here, we present a literature review on BCL2 family expression and protein distribution in human and animal oocytes and early embryos. Most of the studies focused on the expression of two antagonistic members: the founding and survival family member BCL2 and its proapoptotic homolog BAX. However, recent transcriptomic analyses have identified novel candidate genes related to oocyte and/or early embryonic viability (such as BCL2L10) or commitment to apoptosis (e.g. BIK). Interestingly, some BCL2 proteins appear to be differentially distributed at the subcellular level during oocyte maturation and early embryonic development, a process probably linked to the functional compartmentalization of the ooplasm and blastomere. Assessment of BCL2 family involvement in regulating the survival of human oocytes and embryos may be of particular value for diagnosis and assisted reproductive technology. We suggest that implications of not only aberrant gene expression but also abnormal subcellular protein redistribution should be established in pathological conditions resulting in infertility.


Assuntos
Blastocisto/metabolismo , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Animais , Blastocisto/patologia , Morte Celular , Sobrevivência Celular , Feminino , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade/genética , Infertilidade/metabolismo , Infertilidade/fisiopatologia , Oócitos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
19.
Cell Biosci ; 11(1): 183, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663442

RESUMO

BACKGROUND: Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. RESULTS: We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. CONCLUSION: NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity.

20.
Front Immunol ; 12: 624024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841404

RESUMO

Objectives: Mesenchymal stem/stromal cells (MSCs) are widely investigated in regenerative medicine thanks to their immunomodulatory properties. They exert their anti-inflammatory function thanks to the secretion of a number of mediators, including proteins and miRNAs, which can be released in the extracellular environment or in the cargo of extracellular vesicles (EVs). However, the role of miRNAs in the suppressive function of MSCs is controversial. The aim of the study was to identify miRNAs that contribute to the immunomodulatory function of human bone marrow-derived MSCs (BM-MSCs). Methods: Human BM-MSCs were primed by coculture with activated peripheral blood mononuclear cells (aPBMCs). High throughput miRNA transcriptomic analysis was performed using Human MicroRNA TaqMan® Array Cards. The immunosuppressive function of miRNAs was investigated in mixed lymphocyte reactions and the delayed type hypersensitivity (DTH) murine model. Results: Upon priming, 21 out of 377 tested miRNAs were significantly modulated in primed MSCs. We validated the up-regulation of miR-29a, miR-146a, miR-155 and the down-regulation of miR-149, miR-221 and miR-361 in additional samples of primed MSCs. We showed that miR-155 significantly reduced the proliferation of aPBMCs in vitro and inflammation in vivo, using the DTH model. Analysis of miRNA-mRNA interactions revealed miR-221 as a potential target gene that is down-regulated by miR-155 both in primed MSCs and in aPBMCs. Conclusion: Here, we present evidence that miR-155 participates to the immunosuppressive function of human BM-MSCs and down-regulates the expression of miR-221 as a possible inflammatory mediator.


Assuntos
Vesículas Extracelulares/metabolismo , Hipersensibilidade Tardia/prevenção & controle , Leucócitos Mononucleares/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Perfilação da Expressão Gênica , Humanos , Hipersensibilidade Tardia/genética , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/metabolismo , Leucócitos Mononucleares/imunologia , Teste de Cultura Mista de Linfócitos , Masculino , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA