Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(9): 337, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978146

RESUMO

An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.


Assuntos
Ouro , Nanopartículas Metálicas , Meios de Contraste , Glutationa , Imagem Óptica , Pós , Sefarose
2.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233297

RESUMO

Rapid, simple, and sensitive analysis of relevant proteins is crucial in many research areas, such as clinical diagnosis and biomarker detection. In particular, clinical data on cancer biomarkers show great promise in forming reliable predictions for early cancer diagnostics, although the current analytical systems are difficult to implement in regions of limited recourses. Paper-based biosensors, in particular, have recently received great interest because they meet the criteria for point-of-care (PoC) devices; the main drawbacks with these devices are the low sensitivity and efficiency in performing quantitative measurements. In this work, we design a low-cost paper-based nanosensor through plasmonic calligraphy by directly drawing individual plasmonic lines on filter paper using a ballpoint pen filled with gold nanorods (AuNR) as the colloidal ink. The plasmonic arrays were further successively coated with negatively and positively charged polyelectrolyte layers employed as dielectric spacers to promote the enhancement of the emission of carboxyl-functionalized quantum dots (QD)-previously conjugated with specific antibodies-for indirect detection of the carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). The efficiency, sensitivity, as well as the specificity of our portable nanosensor were validated by recording the luminescence of the QD@Ab complex when different concentrations of CEACAM5 were added dropwise onto the calligraphed plasmonic arrays.


Assuntos
Técnicas Biossensoriais , Nanotubos , Antígeno Carcinoembrionário , Ouro , Polieletrólitos
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430201

RESUMO

Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.


Assuntos
Melanoma Experimental , Nanopartículas Metálicas , Animais , Ouro/farmacologia , Fototerapia , Nanopartículas Metálicas/uso terapêutico , Fármacos Fotossensibilizantes , Melanoma Experimental/terapia
4.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887073

RESUMO

Acute myocardial infarction (AMI) is considered as one of the main causes of death, threating human lives for decades. Currently, its diagnosis relies on electrocardiography (ECG), which has been proven to be insufficient. In this context, the efficient detection of cardiac biomarkers was proposed to overcome the limitations of ECG. In particular, the measurement of troponins, specifically cardiac troponin I (cTnI) and cardiac troponin T (cTnT), has proven to be superior in terms of sensitivity and specificity in the diagnosis of myocardial damage. As one of the most life-threatening conditions, specific and sensitive investigation methods that are fast, universally available, and cost-efficient to allow for early initiation of evidence-based, living-saving treatment are desired. In this review, we aim to present and discuss the major breakthroughs made in the development of cTnI and cTnT specific biosensor designs and analytical tools, highlighting the achieved progress as well as the remaining challenges to reach the technological goal of simple, specific, cheap, and portable testing chips for the rapid and efficient on-site detection of cardiac cTnI/cTnT biomarkers in order to diagnose and treat cardiovascular diseases at an incipient stage.


Assuntos
Técnicas Biossensoriais , Infarto do Miocárdio , Biomarcadores , Humanos , Infarto do Miocárdio/diagnóstico , Troponina I , Troponina T
5.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293265

RESUMO

Herein is presented a novel and efficient portable paper-based sensing platform using paper-incorporated histidine stabilized gold nanoclusters (His-AuNCs), for the sensitive and selective detection of Fe ions from low-volume real water samples based on photoluminescence (PL) quenching. Highly photoluminescent colloidal His-AuNCs are obtained via a novel microwave-assisted method. The His-AuNCs-based sensor reveals a limit of detection (LOD) as low as 0.2 µM and a good selectivity towards Fe ions, in solution. Further, the fabricated portable sensing device based on paper impregnated with His-AuNCs proves to be suitable for the easy detection of hazardous Fe levels from real water samples, under UV light exposure, through evaluating the level of PL quenching on paper. Photographic images are thereafter captured with a smartphone camera and the average blue intensity ratio (I/I0) of the His-AuNCs-paper spots is plotted against [Fe2+] revealing a LOD of 3.2 µM. Moreover, selectivity and competitivity assays performed on paper-based sensor prove that the proposed platform presents high selectivity and accuracy for the detection of Fe ions from water samples. To validate the platform, sensing assays are performed on real water samples from local sources, spiked with 35 µM Fe ions (i.e., Fe2+). The obtained recoveries prove the high sensitivity and accuracy of the proposed His-AuNCs-paper-based sensor pointing towards its applicability as an easy-to-use, fast, quantitative and qualitative sensor suitable for on-site detection of toxic levels of Fe ions in low-volume real water samples.


Assuntos
Ouro , Nanopartículas Metálicas , Histidina , Água , Espectrometria de Fluorescência/métodos , Limite de Detecção
6.
Analyst ; 146(23): 7126-7130, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34723292

RESUMO

Recently, gold nanoclusters (AuNCs) have received considerable scientific interest due to their ability to generate intrinsic photoluminescence (PL), making them suitable for a wide range of applications, such as sensing, biolabeling and bioimaging. Fluorescence lifetime imaging microscopy (FLIM) is an extremely promising technique when it comes to tissue imaging, especially once combined with near-infrared two-photon excitation (TPE) due to deep tissue penetration and improved spatial resolution. In this paper, we carried out an innovative study on the ability of bovine serum albumin stabilized gold nanoclusters (BSA-AuNCs) to perform as reliable label-free contrast agents for the visualization of tissue-like agarose phantoms via TPE-FLIM. We prove that BSA-AuNCs exhibit uniform and reproducible TPE PL in the first biological window, when embedded in phantoms, under 820 nm excitation provided by a Ti:Sapphire pulsed laser. The two-photon origin of the emission signal inside the phantom is demonstrated by the quadratic dependence of the PL intensity on the excitation power. Moreover, we focused on the evaluation of BSA-AuNCs' potential as contrast agents at different concentrations inside phantoms, simulating an ex vivo environment, at three NIR excitation wavelengths, in view of defining the optimal experimental conditions for future real-tissue imaging assays. The present study aims at translating our previous results on the successful performance of BSA-AuNCs as contrast agents for in vitro FLIM imaging, using visible light, towards non-invasive ex vivo NIR imaging applications. Besides the advantageous use of the combined techniques TPE-FLIM, the novelty of our work consists of demonstrating for the first time the capacity of BSA-AuNCs to perform as bright contrast agents inside cancer-tissue mimicking phantoms. We prove that BSA-AuNCs show great promise as fluorescent contrast agents for TPE-FLIM towards image-assisted tumor surgery.


Assuntos
Ouro , Nanopartículas Metálicas , Meios de Contraste , Imagem Óptica , Soroalbumina Bovina
7.
Anal Bioanal Chem ; 413(5): 1417-1428, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388848

RESUMO

Surface-enhanced Raman scattering (SERS), based on the enhancement of the Raman signal of molecules positioned within a few nanometres from a structured metal surface, is ideally suited to provide bacterial-specific molecular fingerprints which can be used for analytical purposes. However, for some complex structures such as bacteria, the generation of reproducible SERS spectra is still a challenging task. Among the various factors influencing the SERS variability (such as the nature of SERS-active substrate, Raman parameters and bacterial specificity), we demonstrate in this study that the environment of Gram-positive and Gram-negative bacteria deposited on ultra-thin silver films also impacts the origin of the SERS spectra. In the case of densely packed bacteria, the obtained SERS signatures were either characteristic of the secretion of adenosine triphosphate for Staphylococcus aureus (S. aureus) or the cell wall and the pili/flagella for Escherichia coli (E. coli), allowing for an easy discrimination between the various strains. In the case of isolated bacteria, SERS mapping together with principal component analysis revealed some variabilities of the spectra as a function of the bacteria environment and the bactericidal effect of the silver. However, the variability does not preclude the SERS signatures of various E. coli strains to be discriminated.


Assuntos
Escherichia coli/química , Análise Espectral Raman/métodos , Staphylococcus aureus/química , Escherichia coli/citologia , Infecções por Escherichia coli/microbiologia , Humanos , Prata/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/citologia , Propriedades de Superfície
8.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804193

RESUMO

We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a' was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a' in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications.


Assuntos
Corantes Fluorescentes/química , Compostos de Piridínio/química , Coloração e Rotulagem/métodos , Animais , Corantes Fluorescentes/síntese química , Camundongos , Microscopia de Fluorescência , Fenotiazinas/química , Fótons , Compostos de Piridínio/síntese química , Solventes/química , Espectrometria de Fluorescência/métodos
9.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361832

RESUMO

In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (-13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.


Assuntos
Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Soroalbumina Bovina/química , Proliferação de Células , Feminino , Humanos , Indóis/química , Isoindóis , Luz , Simulação de Acoplamento Molecular , Nanopartículas/química , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Tumorais Cultivadas
10.
Nanotechnology ; 31(33): 335502, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32348974

RESUMO

In this work, we propose a novel approach to design robust microfluidic devices with integrated plasmonic transducers allowing portability, reduced analysis time through dynamic measurements and high sensitivity. Specifically, the strategy we apply involves two steps: (i) the controlled deposition of gold bipyramidal nanoparticles (AuBPs) onto a functionalized solid glass substrate and (ii) the integration of the as-fabricated plasmonic substrate into a polydimethylsiloxane (PDMS) microfluidic circuit. The localized surface plasmon resonance (LSPR) sensitivity of the plasmonic-microfluidic device was evaluated by monitoring the optical responses at refractive index changes, proving a bulk sensitivity of 243 nm RIU-1 for the longitudinal LSPR band of isolated AuBPs and 150 nm RIU-1 for the band assigned to end-to-end linked nanoparticles. A strong electric field generated in the gaps between AuBPs-due to the generation of the so-called extrinsic 'hot-spots'-was subsequently proved by the volumetric surface enhanced Raman scattering (SERS) detection of molecules in continuous flow conditions by loading the analyte into the microfluidic channel via a syringe pump. In conclusion, our miniaturized portable microfluidic system aims to detect and identify, in real-time with high accuracy, analyte molecules in laminal flow, thus providing a groundwork for further complex biosensing applications.

11.
Nanotechnology ; 31(31): 315102, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32315999

RESUMO

Nowadays, extensive research is being carried out to find innovative solutions for the development of stable, reproductible, and highly efficient fluorescent contrast agents with the ability of targeting specific cells, which can be further implemented for fluorescent-guided surgery in a real clinical setting. The present study is focused on the development of fluorescent dye-loaded protein nanoparticles (NPs) to overcome the drawbacks of the standard administration of free organic fluorophores, such as cytotoxicity, aqueousinstability, and rapid photo-degradation. Precisely, human serum albumin (HSA) NPs loaded with two different FDA approved dyes, namely indocyanine green (ICG) and fluorescein isothiocyanate (FITC), with a fluorescence response in the near-infrared and visible spectral domains, respectively, have been successfully designed. Even though the diameter of fluorescent HSA NPs is around 30 nm as proven by dynamic light scattering and transmission electron microscopy investigations, they present good loading efficiencies of almost 50% for ICG, and over 30% for FITC and a high particle yield of over 75%. Molecular docking simulations of ICG and FITC within the structure of HSA confirmed that the dyes were loaded inside the NPs, and docked in Site I (subdomain IIA) of the HSA molecule. After the confirmation of their high fluorescence photostability, the NPs were covalently conjugated with folic acid (HSA-FA NPs) in order to bind specifically to the folate receptor alpha (FRα) protein overexpressed on NIH:OVCAR3 ovarian cancer cells. Finally, fluorescence microscopy imaging investigations validate the improved internalization of folate targeted HSA&FITC NPs compared to cells treated with untargeted ones. Furthermore, TEM examinations of the distribution of HSA NPs into the NIH:OVCAR3 cells revealed anincreased number of NP-containing vesicles for the cells treated with HSA-FA NPs, compared to the cells exposed to untargeted HAS NPs, upholding the enhanced cellular uptake through FRα-mediated potocytosis.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Corantes Fluorescentes/química , Ácido Fólico/farmacologia , Neoplasias Ovarianas/metabolismo , Albumina Sérica Humana/química , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Fluoresceína-5-Isotiocianato/química , Ácido Fólico/química , Humanos , Verde de Indocianina/química , Simulação de Acoplamento Molecular , Nanopartículas , Regulação para Cima
12.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664456

RESUMO

The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.


Assuntos
Ciclodextrinas/metabolismo , Doxorrubicina/metabolismo , Expressão Gênica/efeitos dos fármacos , Grafite/metabolismo , Nanoestruturas/administração & dosagem , Neoplasias/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ciclodextrinas/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , Camundongos , Neoplasias/tratamento farmacológico
13.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668589

RESUMO

Nowadays, thanks to nanotechnological progress, which itself guides us more and more closely toward not only the efficient design of innovative nanomaterials or nanostructures, but to the improvement of their functionality, we benefit from an important asset in the battle against pathogenic illnesses. Herein, we report a versatile biocompatible plasmonic nanoplatform based on a Whatman paper incorporating positively-charged gold nanospherical particles via the immersion approach. The morphological characterization of the as-engineered-plasmonic paper was examined by SEM (scanning electron microscopy) and HRTEM (high-resolution transmission electron microscopy) investigations, while its surface chemical modification with a synthetic polypeptide, specifically RRWHRWWRR-NH2 (P2), was proved by monitoring the plasmonic response of loaded gold nanospheres and the emission signal of P2 via fluorescence spectroscopy. The as-functionalized plasmonic paper is non-cytotoxic towards BJ fibroblast human cells at bactericidal concentrations. Finally, the antimicrobial activity of the P2-functionalized plasmonic paper on both planktonic bacteria and biofilms was tested against two reference strains: Gram-positive Bacteria, i.e., Staphylococcus aureus and the Gram-negative Bacteria, i.e., Escherichia coli, determining microbial inhibition of up to 100% for planktonic bacteria. In line with the above presented nanoplatform's proper design, followed by their functionalization with active antimicrobial peptides, new roads can be open for determining antibiotic-free treatments against different relevant pathogens.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Escherichia coli/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/química , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Humanos , Papel
14.
Nanotechnology ; 30(40): 405701, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31247611

RESUMO

In this work, we present a thorough study on the evaluation of the photothermal conversion efficiencies of gold nanobipyramids (AuBPs) under irradiation by two phototherapeutic laser lines at 785 and 808 nm. Due to fine tunability of the longitudinal localized surface plasmon resonance (LSPR) of AuBPs along the entire biological window, AuBPs have great potential to be applied as efficient photothermal agents in specific hyperthermia applications. Aiming to identify the most suitable AuBPs for each laser line, here we synthetized AuBPs of six different aspect ratios with longitudinal LSPR ranging from 662 to 929 nm and compared their intrinsic photothermal properties in colloidal solutions under laser irradiation at various experimental parameters such as sample volume, optical density and laser power. In addition, the experimental plasmonic resonances of the as-prepared AuBPs were perfectly simulated and their theoretical extinction and absorption cross-sections provided by finite-difference time-domain technique. Finally, we found photothermal conversion efficiencies ranging from 40% to 97% for all AuBPs systems under both NIR irradiation laser lines concluding that for the 785 nm excitation wavelength the AuBPs with longitudinal LSPR at 802 nm are most efficient, whereas in the case of the 808 nm laser line the AuBPs with optical response at 812 nm exhibit the best thermal performance. These studies are crucial for designing AuBPs as effective phototherapy agents acting alone or in combination with other plasmon-based or plasmon-assisted therapies.

15.
Nanotechnology ; 30(31): 315701, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30974419

RESUMO

This paper presents the fabrication and characterization of new gold-silver core-shell nanoparticles labeled with para-mercaptobenzoic acid (4MBA) molecules and demonstrates their use as surface-enhanced Raman spectroscopy (SERS)-nanotags with ultra-bright traceability inside cells and ability to convey spectrally-coded information about the intracellular pH by means of SERS. Unlike previous reported studies, our fabrication procedure includes in the first step the synthesis of chitosan-coated gold nanoparticles as a seed material with subsequent growing of a silver shell. The bimetallic core-shell structure is revealed by transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, energy-dispersive x-ray elemental mapping and the presence of two interacting localized surface plasmon resonance modes in UV-vis extinction spectrum. The high SERS activity and sensitivity of as fabricated 4MBA-chit-Au-AgNPs nano-constructs to different pH in solution is investigated under 532 and 633 nm laser lines excitation. Next, in view of future studies in cancer diagnosis, the in vitro antiproliferative effects of SERS-nanotags against human ovarian adenocarcinoma cells (NIH:OVCAR-3) are evaluated. The capacity to operate as bright SERS nanotags with precise localization at a single cell level as well as intracellular pH indicators is clearly demonstrated by performing cell imaging under scanning confocal Raman microscopy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias Ovarianas/diagnóstico , Prata/química , Análise Espectral Raman/métodos , Benzoatos/química , Linhagem Celular Tumoral , Feminino , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Ovarianas/química , Compostos de Sulfidrila/química
16.
Anal Chem ; 90(14): 8567-8575, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29902917

RESUMO

In this work, we demonstrate the feasibility of gold bipyramidal-shaped nanoparticles (AuBPs) to be used as active plasmonic nanoplatforms for the detection of the biotin-streptavidin interaction in aqueous solution via both Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering (LSPR/SERS). Our proof of concept exploits the precise attachment of the recognition element at the tips of AuBPs, where the electromagnetic field is stronger, which is beneficial to the surface sensitivity of longitudinal LSPR on the local refractive index and to the electromagnetic enhancement of SERS activity, too. Indeed, successive red shifts of the longitudinal LSPR associated with increased local refractive index reveal the attachment of para-aminothiophenol (p-ATP) chemically labeled Biotin to the Au surface and the specific capture of the target protein by biotin-functionalized AuBPs. Finite-Difference Time-Domain simulations based on the reconstructed index of refraction confirm LSPR measurements. However, the molecular identification of the biotin-streptavidin interaction remains elusive by LSPR investigation alone. Remarkably, we succeeded to complement the LSPR detection with reliable SERS measurements which permitted to (a) certify the molecular identification of biotin-streptavidin interaction and (b) extend the limit of detection of streptavidin in solution toward 10-12 M. Finally, to further probe the possibility to implement the AuBPs as dual LSPR-SERS based immunoassays in solution for real clinical diagnostics, we additionally investigated the AuBP's performance to transduce the specific antihuman IgG- human IgG binding event, providing thus a reference design for building unique plasmonic immunoassays for dual-optical detection of target proteins in aqueous solution.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Imunoensaio/instrumentação , Imunoglobulina G/análise , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Biotina/química , Humanos , Estreptavidina/química
17.
Sensors (Basel) ; 18(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208609

RESUMO

Paper-based platforms can be a promising choice as portable sensors due to their low-cost and facile fabrication, ease of use, high sensitivity, specificity and flexibility. By combining the qualities of these 3D platforms with the optical properties of gold nanoparticles, it is possible to create efficient nanodevices with desired biosensing functionalities. In this work, we propose a new plasmonic paper-based dual localized surface plasmon resonance⁻surface-enhanced Raman scattering (LSPR-SERS) nanoplatform with improved detection abilities in terms of high sensitivity, uniformity and reproducibility. Specifically, colloidal gold nanorods (GNRs) with a well-controlled plasmonic response were firstly synthesized and validated as efficient dual LSPR-SERS nanosensors in solution using the p-aminothiophenol (p-ATP) analyte. GNRs were then efficiently immobilized onto the paper via the immersion approach, thus obtaining plasmonic nanoplatforms with a modulated LSPR response. The successful deposition of the nanoparticles onto the cellulose fibers was confirmed by LSPR measurements, which demonstrate the preserved plasmonic response after immobilization, as well as by dark-field microscopy and scanning electron microscopy investigations, which confirm their uniform distribution. Finally, a limit of detection for p-ATP as low as 10-12 M has been achieved by our developed SERS-based paper nanoplatform, proving that our optimized plasmonic paper-based biosensing design could be further considered as an excellent candidate for miniaturized biomedical applications.

18.
Biomed Microdevices ; 18(1): 12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26820563

RESUMO

Neuroendocrine tumors, such as pheochromocytoma or paraganglioma, are dangerous tumors that constitute a potential threat for a large number of patients. Currently, the biochemical diagnosis of neuroendocrine tumors is based on measurement of the direct secretory products of the adrenomedullary-sympathetic system or of their metabolites, such as catecholamines or their metanephrine derivatives, from plasma or urine. The techniques used for analysis of plasma free metanephrines, i.e. high-performance liquid chromatography or high-performance liquid chromatography coupled with mass-spectrometry are technically-demanding and time consuming, which limit their availability. Here we demonstrate a simple, fast and low-cost method for detecting metanephrine by Surface Enhanced Raman Scattering (SERS). The protocol consists in using evaporation-induced self-assembly of gold (Au) nanoparticles incubated with the analyte, on planar gold films. The assembly process produces regions with a dense distribution of both inter-particle gaps and particle-film gaps. Finite-difference time-domain simulations confirm that both kinds of gaps are locations of enhanced electromagnetic fields resulting from inter-particle and particle-film plasmonic coupling, useful for SERS amplification. Metanephrine vibrational bands assignment was performed according to density functional theory calculations. Metanephrine metabolite was detected in liquid at concentration levels lower than previously reported for other similar metabolites. The obtained results demonstrate that the Au nanoparticle/Au film exhibits noticeable SERS amplification of the adsorbed metabolite and can be used in the design of efficient, stable SERS-active substrates for the detection and identification of specific tumor markers.


Assuntos
Neoplasias das Glândulas Suprarrenais/metabolismo , Biomarcadores/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Metanefrina/metabolismo , Feocromocitoma/metabolismo , Humanos , Análise Espectral Raman/métodos
19.
Nanotechnology ; 26(5): 055101, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25573907

RESUMO

In this paper, we propose a multi-parametric in vitro study of the cytotoxicity of gold nanoparticles (GNPs) on human endothelial cell (HUVEC). The cytotoxicity is evaluated by incubating cells with six different GNP types which have two different morphologies: spherical and flower-shaped, two sizes (∼15 and ∼50 nm diameter) and two surface chemistries (as prepared form and PEGylated form). Our results showed that by increasing the concentration of GNPs the cell viability decreases with a toxic concentration threshold of 10 pM for spherical GNPs and of 1 pM for flower-shaped GNPs. Dark field images, flow cytometry and spreading test revealed that flower-shaped GNPs have more deleterious effects on the cell mechanisms than spherical GNPs. We demonstrated that the main parameter in the evaluation of the GNPs toxicity is the GNPs roughness and that this effect is independent on the surface chemistry. We assume that this behavior is highly related to the efficiency of the GNPs internalization within the cells and that this effect is enhanced due to the specific geometry of the flower-shaped GNPs.


Assuntos
Células Endoteliais/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Células Cultivadas , Humanos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
20.
Mol Pharm ; 11(2): 391-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24304361

RESUMO

The effectiveness of a therapeutic agent for cancer stands in its ability to reduce and eliminate tumors without harming the healthy tissue nearby. Nanoparticles peripherally conjugated with targeting moieties offer major improvements in therapeutics through site specificity. In this study we demonstrate this approach by targeting the folate receptor of NIH:OVCAR-3 human ovary cancer cell line. Herein we used silver nanotriangles which were biocompatibilized with chitosan (bio)polymer, labeled with para-aminothiophenol (pATP) Raman reporter molecule, and conjugated with folic acid. The nanoparticles conjugation and efficient labeling was investigated by localized surface plasmon resonance (LSPR), zeta potential, and surface-enhanced Raman scattering (SERS) measurements. Conjugated particles were proven to be highly stable in aqueous and cellular medium. The targeted uptake of conjugated nanoparticles by human ovary cancer cells was confirmed by dark field microscopy and scattering spectra of the particles inside cells. Comparative studies revealed specific internalization of the conjugated nanoparticles in comparison with similar bare nanoparticles. Moreover, the SERS identity of the particles was proven to be highly conserved inside cells. Targeted cancer cell treatment conducted by irradiating the nanoparticle-treated cells with a continuous wave-nearinfrared (cw-NIR) laser in resonance with their plasmonic band proved an efficient therapeutic response. By integrating the advantages of multimodal optical imaging and SERS detection with hyperthermia capabilities through site specificity, these nanoparticles can represent a real candidate for personalized medicine.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Prata , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Feminino , Temperatura Alta , Humanos , Lasers , Imagem Multimodal , Prata/química , Prata/farmacologia , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA