Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Microencapsul ; 34(2): 171-184, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28350268

RESUMO

Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.


Assuntos
Alginatos/farmacologia , Inulina/farmacologia , Probióticos , Simbióticos , Colo , Formas de Dosagem
2.
J Microencapsul ; 33(1): 89-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26805512

RESUMO

This work aims to develop an encapsulated oral-synbiotic supplement by studying the effect of adding inulin in alginate beads and observing its ability to protect three probiotic strains: Pediocucus acidilactici, Lactobacillus reuteri and Lactobacillus salivarius. Beads of different inulin concentrations 0%, 5%, 10%, 15% and 20% (w/v) in 2% (w/v) alginate solution were prepared by the extrusion/ionotropic gelation method. Polymer distribution within beads was characterised using confocal laser scanning microscopy. Interactions between alginate and inulin were monitored by Fourier transform infra-red spectroscopy (FTIR). Effect of encapsulation on viability, antimicrobial ability, acid tolerance and bile tolerance of probiotic strains were investigated. Antimicrobial and probiotic properties of bacterial strains were not affected by encapsulation. Bacterial protection against acidity was increased by adding inulin. Beads with 5% w/v inulin were the most effective in bacterial protection against bile-salts. To our knowledge, this work is the first to use such high concentrations of inulin.


Assuntos
Alginatos/química , Inulina/química , Limosilactobacillus reuteri/metabolismo , Prebióticos/microbiologia , Células Imobilizadas/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Limosilactobacillus reuteri/química
3.
Probiotics Antimicrob Proteins ; 10(2): 157-167, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29181802

RESUMO

According to the World Health Organization (WHO), using antibiotics as growth promoters for livestock-particularly swine-is the principal cause of antibiotic resistance. It is therefore clear that finding an alternative to antibiotics becomes an emergency. Hundreds of recent studies have appointed probiotics as potential candidates to replace or to be used in combination with antibiotics. However, bringing probiotics alive to the colon-their site of action-remains a big challenge because of different physiological barriers encountered in proximal gastrointestinal tract (GIT) such as acidic pH and bile salts that may affect the viability of probiotic cultures. To overcome this problem, in previous studies, we developed and characterize a synbiotic formula consisting of beads of a mixture of alginate and inulin. Three potential probiotics strains namely Pediococcus acidilactici UL5 (UL5), Lactobacillus reuteri (LR), and Lactobacillus salivarius (LS) were encapsulated to study their release and the behavior of this synbiotic formula throughout the GIT using in vitro models. The survival and the release of bacteria from beads were studied by specific PMA-qPCR counting. The microscopic aspects of the beads were studied using scanning electron microscopy (SEM). Moreover, the microbial dynamics inside beads were studied by fluorescence microscopy using the live/dead test. Our results have shown that the beads containing 5% inulin were the most stable in the stomach and throughout the small intestine. However, beads were completely degraded in approximately 3 h of incubation in the fermented medium that mimic the colon. These results were confirmed by SEM and fluorescence microscopy images. Therefore, it can be stated that the AI5 formulation well protected the bacteria in the upper part of the digestive tract and allowed their controlled release in the colon.


Assuntos
Alginatos/química , Colo/microbiologia , Sistemas de Liberação de Medicamentos/métodos , Inulina/química , Limosilactobacillus reuteri/química , Pediococcus acidilactici/química , Probióticos/química , Simbióticos/análise , Animais , Composição de Medicamentos , Trato Gastrointestinal/microbiologia , Limosilactobacillus reuteri/crescimento & desenvolvimento , Viabilidade Microbiana , Pediococcus acidilactici/crescimento & desenvolvimento , Prebióticos/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA