Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5598-5612, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270979

RESUMO

Imaging plays a critical role in all stages of cancer care from early detection to diagnosis, prognosis, and therapy monitoring. Recently, photoacoustic imaging (PAI) has started to emerge into the clinical realm due to its high sensitivity and ability to penetrate tissues up to several centimeters deep. Herein, we encapsulated indocyanine green J (ICGJ) aggregate, one of the only FDA-approved organic exogenous contrast agents that absorbs in the near-infrared range, at high loadings up to ∼40% w/w within biodegradable polymersomes (ICGJ-Ps) composed of poly(lactide-co-glycolide-b-polyethylene glycol) (PLGA-b-PEG). The small Ps hydrodynamic diameter of 80 nm is advantageous for in vivo applications, while directional conjugation with epidermal growth factor receptor (EGFR) targeting cetuximab antibodies renders molecular specificity. Even when exposed to serum, the ∼11 nm-thick membrane of the Ps prevents dissociation of the encapsulated ICGJ for at least 48 h with a high ratio of ICGJ to monomeric ICG absorbances (i.e., I895/I780 ratio) of approximately 5.0 that enables generation of a strong NIR photoacoustic (PA) signal. The PA signal of polymersome-labeled breast cancer cells is proportional to the level of cellular EGFR expression, indicating the feasibility of molecular PAI with antibody-conjugated ICGJ-Ps. Furthermore, the labeled cells were successfully detected with PAI in highly turbid tissue-mimicking phantoms up to a depth of 5 mm with the PA signal proportional to the amount of cells. These data show the potential of molecular PAI with ICGJ-Ps for clinical applications such as tumor margin detection, evaluation of lymph nodes for the presence of micrometastasis, and laparoscopic imaging procedures.


Assuntos
Imunoconjugados , Técnicas Fotoacústicas , Verde de Indocianina/química , Meios de Contraste/química , Análise Espectral , Imagem Molecular , Receptores ErbB , Técnicas Fotoacústicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA