Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(33): 23616-23624, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39136144

RESUMO

Magnetic materials are widely used for many technologies in energy, health, transportation, computation, and data storage. For the latter, the readout of the magnetic state of a medium is crucial. Optical readout based on the magneto-optical Faraday effect was commercialized but soon abandoned because of the need for a complex circular polarization-sensitive readout. Combining chirality with magnetism can remove this obstacle, as chiral magnetic materials exhibit magneto-chiral dichroism, a differential absorption of unpolarized light dependent on their magnetic state. Molecular chemistry allows the rational introduction of chirality into single-molecule magnets (SMMs), ultimate nanoobjects capable of retaining magnetization. Here, we report the first experimental demonstration of optical detection of the magnetic state of an SMM using unpolarized light on a novel air-stable Dy-based chiral SMM featuring a strong single-ion magnetic anisotropy. These findings might represent a paradigm shift in the field of optical data readout technologies.

2.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848498

RESUMO

Here we report on the strong magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption up to 5.0 T on {Er5Ni6} metal clusters obtained by reaction of enantiopure chiral ligands and NiII and ErIII precursors. Single-crystal diffraction analysis reveals that these compounds are 3d-4f heterometallic clusters, showing helical chirality. MChD spectroscopy reveals a high gMChD dissymmetry factor of ca. 0.24 T-1 (T = 4.0 K, B = 1.0 T) for the 4I13/2 ← 4I15/2 magnetic-dipole allowed electronic transition of the ErIII centers. This record value is 1 or 2 orders of magnitude higher than that of the d-d electronic transitions of the NiII ions and the others f-f electric-dipole induced transitions of the ErIII centers. These findings clearly show the key role that magnetic-dipole allowed transitions have in the rational design of chiral lanthanide systems showing strong MChD.

3.
Angew Chem Int Ed Engl ; : e202412521, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374103

RESUMO

Here we report on the Magneto-Chiral Dichroism (MChD) detected through visible and near-infrared light absorption of two enantiomeric pairs of ErIII and TmIII chiral complexes featuring a propeller-like molecular structure. The magnetic properties show typical features of isolated paramagnetic ions associated with 4I15/2 and 3H6 ground state terms. MChD spectroscopy shows high gMChD dissymmetry factors of ca. 0.12 T-1 and 0.05 T-1 (T = 4.0 K and B = 1.0 T) for ErIII and TmIII, respectively, associated with their magnetic-dipole allowed 4I13/2 ← 4I15/2 and 3H5 ← 3H6 transitions. MChD signals of the two complexes were detected up to room temperature and under magnetic fields up to 5.0 T. For the first time, the MChD results reported here are discussed in the context of the Richardson theory of lanthanide optical activity and provide clear indications on the strongest MChD-active electronic transitions of lanthanide complexes.

4.
Inorg Chem ; 62(43): 17583-17587, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37856861

RESUMO

Here we report magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption of a chiral dysprosium(III) coordination polymer. The two enantiomers of [DyIII(H6(py)2)(hfac)3]n [H6(py)2 = 2,15-bis(4-pyridyl)ethynylcarbo[6]helicene; hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate], where the chirality is provided by a functionalized helicene ligand, were structurally, spectroscopically, and magnetically investigated. Magnetic measurements reveal a slow relaxation of the magnetization, with differences between enantiopure and racemic systems rationalized on the basis of theoretical calculations. When the enantiopure complexes are irradiated with unpolarized light in a magnetic field, they exhibit multiple MChD signals associated with the f-f electronic transitions of DyIII, thus providing the coexistence of MChD-active absorptions and single-molecule-magnet (SMM) behavior. These findings clearly show the potential that rationally designed chiral SMMs have in enabling the optical readout of magnetic memory through MChD.

5.
Angew Chem Int Ed Engl ; 62(5): e202215558, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36449410

RESUMO

The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.

6.
J Am Chem Soc ; 144(19): 8837-8847, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503109

RESUMO

Here, we report the molecular self-assembly of hydroxido-bridged {Ln5Ni6} ((Ln3+ = Dy3+, Y3+) metal clusters by the reaction of enantiopure chiral ligands, namely, (R/S)-(2-hydroxy-3-methoxybenzyl)-serine), with NiII and LnIII precursors. Single-crystal diffraction analysis reveals that these compounds are isostructural sandwich-like 3d-4f heterometallic clusters showing helical chirality. Direct current magnetic measurements on {Dy5Ni6} indicates ferromagnetic coupling between DyIII and NiII centers, whereas those on {Y5Ni6} denote that the NiII centers are antiferromagnetically coupled and/or magnetically anisotropic. Magneto-chiral dichroism (MChD) measurements on {Dy5Ni6} and its comparison to that of {Y5Ni6} provide the first experimental observation of intense multimetal site MChD signals in the visible-near-infrared region. Moreover, the comparison of MChD with natural and magnetic circular dichroism spectra unambiguously demonstrate for the first time that the MChD signals associated with the NiII d-d transitions are mostly driven by natural optical activity and those associated with the DyIII f-f transitions are driven by magnetic optical activity.


Assuntos
Elementos da Série dos Lantanídeos , Compostos Organometálicos , Cristalografia por Raios X , Elementos da Série dos Lantanídeos/química , Fenômenos Magnéticos , Magnetismo , Compostos Organometálicos/química
7.
J Am Chem Soc ; 143(7): 2671-2675, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577302

RESUMO

Here we report the first experimental observation of magneto-chiral dichroism (MChD) detected through light absorption in an enantiopure lanthanide complex. The P and M enantiomers of [YbIII((X)-L)(hfac)3] (X = P, M; L = 3-(2-pyridyl)-4-aza[6]-helicene; hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate), where the chirality is held by the helicene-based ligand, were studied in the near-infrared spectral window. When irradiated with unpolarized light in a magnetic field, these chiral complexes exhibit a strong MChD signal (gMChD ca. 0.12 T-1) associated with the 2F5/2 ← 2F7/2 electronic transition of YbIII. The low temperature absorption and MChD spectra reveal a fine structure associated with crystal field splitting and vibronic coupling. The temperature dependence of the main dichroic signal detected up to 150 K allowed, for the first time, the disentanglement of the two main microscopic contributions to the dichroic signal predicted by the MChD theory. These findings pave the way toward probing MChD in chiral lanthanide-based single-molecule magnets.

8.
Inorg Chem ; 60(1): 140-151, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305944

RESUMO

The selection of molecular spin qubits with a long coherence time, Tm, is a central task for implementing molecule-based quantum technologies. Even if a sufficiently long Tm can be achieved through an efficient synthetic strategy and ad hoc experimental measurement procedures, many factors contributing to the loss of coherence still need to be thoroughly investigated and understood. Vibrational properties and nuclear spins of hydrogens are two of them. The former plays a paramount role, but a detailed theoretical investigation aimed at studying their effects on the spin dynamics of molecular complexes such as the benchmark phthalocyanine (Pc) is still missing, whereas the effect of the latter deserves to be examined in detail for such a class of compounds. In this work, we adopted a combined theoretical and experimental approach to investigate the relaxation properties of classical [Cu(Pc)] and a CuII complex based on the ligand tetrakis(thiadiazole)porphyrazine (H2TTDPz), characterized by a hydrogen-free molecular structure. Systematic calculations of molecular vibrations exemplify the effect of normal modes on the spin-lattice relaxation process, unveiling a different contribution to T1 depending on the symmetry of normal modes. Moreover, we observed that an appreciable Tm enhancement could be achieved by removing hydrogens from the ligand.

9.
Inorg Chem ; 60(15): 11273-11286, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34264061

RESUMO

We report here a comprehensive characterization of a 3d organometallic complex, [V(Cp)2Cl2] (Cp = cyclopentadienyl), which can be considered as a prototypical multilevel nuclear qudit (nuclear spin I = 7/2) hyperfine coupled to an electronic qubit (electronic spin S = 1/2). By combining complementary magnetic resonant techniques, such as pulsed electron paramagnetic resonance (EPR) and broadband nuclear magnetic resonance (NMR), we extensively characterize its Spin Hamiltonian parameters and its electronic and nuclear spin dynamics. Moreover, we demonstrate the possibility to manipulate the qubit-qudit multilevel structure by resonant microwave and radiofrequency pulses, driving coherent Rabi oscillations between targeted electronuclear states. The obtained results demonstrate that this simple complex is a promising candidate for quantum computing applications.

10.
J Thromb Thrombolysis ; 51(1): 159-167, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32424778

RESUMO

It is not known whether the current territorial organization for acute revascularization treatments in ischemic stroke patients guarantees similar time to treatment and functional outcomes among different levels of institutional stroke care. We aimed to assess the impact of time to treatment on functional outcomes in ischemic stroke patients who received intravenous thrombolysis (IVT) alone, bridging (IVT plus thrombectomy), or primary thrombectomy in level 1 and level 2 Stroke Units (SUs) in Triveneto, a geographical macroarea in Northeast of Italy. We conducted an analysis of data prospectively collected from 512 consecutive ischemic stroke patients who received IVT and/or mechanical thrombectomy in 25 SUs from September 17th to December 9th 2018. The favorable outcome measures were mRS score 0-1 and 0-2 at 3 months. The unfavorable outcome measures were mRS score 3-5 and death at 3 months. We estimated separately the possible association of each variable for time to treatment (onset-to-door, door-to-needle, onset-to-needle, door-to-groin puncture, needle-to-groin puncture, and onset-to-groin puncture) with 3-month outcome measures by calculating the odds ratios (ORs) with two-sided 95% confidence intervals (CI) after adjustment for pre-defined variables and variables with a probability value ≤ 0.10 in the univariate analysis for each outcome measure. Distribution of acute revascularization treatments was different between level 1 and level 2 SUs (p < 0.001). Among 182 patients admitted to level 1 SUs (n = 16), treatments were IVT alone in 164 (90.1%), bridging in 12 (6.6%), and primary thrombectomy in 6 (3.3%) patients. Among 330 patients admitted to level 2 SUs (n = 9), treatments were IVT alone in 219 (66.4%), bridging in 74 (22.4%), and primary thrombectomy in 37 (11.2%) patients. Rates of excellent outcome (51.4% vs 45.9%), favorable outcome (60.1% vs 58.7%), unfavorable outcome (33.3% vs 33.8%), and death (9.8% vs 11.3%) at 3 months were similar between level 1 and 2 SUs. No significant association was found between time to IVT alone (onset-to-door, door-to-needle, and onset-to-needle) and functional outcomes. After adjustment, door-to-needle time ≤ 60 min (OR 4.005, 95% CI 1.232-13.016), shorter door-to-groin time (OR 0.991, 95% CI 0.983-0.999), shorter needle-to-groin time (OR 0.986, 95% CI 0.975-0.997), and shorter onset-to-groin time (OR 0.994, 95% CI 0.988-1.000) were associated with mRS 0-1. Shorter door-to-groin time (OR 0.991, 95% CI 0.984-0.998), door-to-groin time ≤ 90 min (OR 12.146, 95% CI 2.193-67.280), shorter needle-to-groin time (OR 0.983, 95% CI 0.972-0.995), and shorter onset-to-groin time (OR 0.993, 95% CI 0.987-0.999) were associated with mRS 0-2. Longer door-to-groin time (OR 1.007, 95% CI 1.001-1.014) and longer needle-to-groin time (OR 1.019, 95% CI 1.005-1.034) were associated with mRS 3-5, while door-to-groin time ≤ 90 min (OR 0.229, 95% CI 0.065-0.808) was inversely associated with mRS 3-5. Longer onset-to-needle time (OR 1.025, 95% CI 1.002-1.048) was associated with death. Times to treatment influenced the 3-month outcomes in patients treated with thrombectomy (bridging or primary). A revision of the current territorial organization for acute stroke treatments in Triveneto is needed to reduce transfer time and to increase the proportion of patients transferred from a level 1 SU to a level 2 SU to perform thrombectomy.


Assuntos
AVC Isquêmico/terapia , Trombectomia/métodos , Terapia Trombolítica/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , AVC Isquêmico/epidemiologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
11.
Chirality ; 33(12): 844-857, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34541710

RESUMO

The interplay between chirality and magnetic fields gives rise to a cross effect referred to as magneto-chiral anisotropy (MChA), which can manifest itself in different physical properties of chiral magnetized materials. The first experimental demonstration of MChA was by optical means with visible light. Further optical manifestations of MChA have been evidenced across most of the electromagnetic spectrum, from terahertz to X-rays. Moreover, exploiting the versatility of molecular chemistry toward chiral magnetic systems, many efforts have been made to identify the microscopic origins of optical MChA, necessary to advance the effect toward technological applications. In parallel, the replacement of light by electric current has allowed the observation of nonreciprocal electrical charge transport in both molecular and inorganic conductors as a result of electrical MChA (eMChA). MChA in other domains such as sound propagation, photochemistry, and electrochemistry are still in their infancy, with only a few experimental demonstrations, and offer wide perspectives for further studies with potentially large impact, like the understanding of the homochirality of life. After a general introduction to MChA, we give a complete review of all these phenomena, particularly during the last decade.

12.
J Am Chem Soc ; 142(32): 13908-13916, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32674563

RESUMO

Magnetochiral dichroism (MChD) is a nonreciprocal manifestation of light-matter interaction that can be observed in chiral magnetized systems. It features a differential absorption of unpolarized light depending on the relative orientation of the magnetic field and the light wavevector and on the absolute configuration of the system. The relevance of this effect for optical readout of magnetic data calls for a complete understanding of the microscopic parameters driving MChD with an easy-accessible and nondamaging light source, such as visible light. For this purpose, here we report on MChD detected with visible light on a chiral magnetic helix formulated as [MnIII(cyclam)(SO4)]ClO4·H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane) featuring antiferromagnetically coupled anisotropic MnIII ions. Alternate current susceptibility measurements revealed the existence of a single-chain magnet behavior hidden below the canted antiferromagnetism (TN = 5.8 K) already evidenced by direct current magnetometry. A detailed analysis of the optical absorption gives access to the value of the zero-field splitting parameter D (2.9 cm-1), which quantifies the magnetic anisotropy of the MnIII centers. Below the magnetic ordering temperature of the material, the MChD spectra exhibit intense absolute configuration dependent MChD signals reaching record values of ca. 12% of the absorbed intensity for the two electronic transitions most influenced by the spin-orbit coupling of the MnIII ion. These findings set a clear route toward the design and preparation of highly MChD-responsive molecular materials.

13.
Chemistry ; 26(44): 9784-9791, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220031

RESUMO

Magneto-chiral dichroism (MChD) is a non-reciprocal manifestation of light-matter interaction that can be observed in chiral systems possessing a magnetization, either spontaneous or induced by an external magnetic field. It features a differential absorption or emission of unpolarized light that depends on the relative orientation of the magnetization with respect to the direction of the light propagation vector and on the absolute configuration of the system. Molecular chemistry is the best-suited route towards systems combining chirality and magnetism. Nowadays, investigation of MChD is still in its infancy although this effect might play a fundamental role in technological applications, such as optical readout of magnetic data with unpolarized light. With this Minireview, the authors provide a precise description of this unconventional effect, recall the main results obtained so far and, highlighting new challenges, underline the opportunities opened to molecular chemists interested in investigating this fascinating effect with implications in chemistry and beyond.

14.
J Am Chem Soc ; 141(29): 11339-11352, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31287678

RESUMO

Implementation of modern Quantum Technologies might benefit from the remarkable quantum properties shown by molecular spin systems. In this Perspective, we highlight the role that molecular chemistry can have in the current second quantum revolution, i.e., the use of quantum physics principles to create new quantum technologies, in this specific case by means of molecular components. Herein, we briefly review the current status of the field by identifying the key advances recently made by the molecular chemistry community, such as for example the design of molecular spin qubits with long spin coherence and the realization of multiqubit architectures for quantum gates implementation. With a critical eye to the current state-of-the-art, we also highlight the main challenges needed for the further advancement of the field toward quantum technologies development.

15.
J Am Chem Soc ; 141(51): 20022-20025, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800226

RESUMO

Here we report on magneto-chiral dichroism (MChD) detected with visible light on the chiral Prussian Blue Analogue [MnII(X-pnH)(H2O)][CrIII(CN)6]·H2O (X = S, R; pn = 1,2-propanediamine). Single crystals suitable for magneto-optical measurements were grown starting from enantiopure chiral ligands. X-ray diffraction and magnetic measurements confirmed the 2D-layered structure of the material, its absolute configuration, and its ferrimagnetic ordered state below a critical temperature TC of 38 K. Absorption and MChD spectra were measured between 450 and 900 nm from room temperature down to 4 K. At 4 K the electronic spectrum features spin-allowed and spin-forbidden transitions of CrIII centers, spin-forbidden transitions of the MnII centers, and metal-to-metal charge transfer bands. The MChD spectra below the magnetic ordering temperature exhibit intense absolute configuration-dependent MChD signals. The temperature dependence of these signals closely follows the material magnetization. Under a magnetic field of 0.46 T, the most intense contribution to MChD represents 2.6% T-1 of the absorbed intensity, one of the highest values observed to date.

16.
Inorg Chem ; 58(15): 10260-10268, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31343163

RESUMO

Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits (qubits). Reducing the efficiency of the spin-phonon interaction is the primary challenge toward achieving long coherence times over a wide temperature range in soft molecular lattices. The lack of a microscopic understanding about the role of vibrations in spin relaxation strongly undermines the possibility of chemically designing better-performing molecular qubits. Here we report a first-principles characterization of the main mechanism contributing to the spin-phonon coupling for a class of vanadium(IV) molecular qubits. Post-Hartree-Fock and density functional theory methods are used to determine the effect of both intermolecular and intramolecular vibrations on modulation of the Zeeman energy for four molecules showing different coordination geometries and ligands. This comparative study provides the first insight into the role played by coordination geometry and ligand-field strength in determining the spin-lattice relaxation time of molecular qubits, opening an avenue to the rational design of new compounds.

17.
J Thromb Thrombolysis ; 47(1): 113-120, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30291514

RESUMO

Intravenous thrombolysis (IVT) is the treatment of choice for most patients with acute ischemic stroke. According to the recently updated guidelines, IVT should be administered in absence of absolute exclusion criteria. We aimed to assess the proportion of ischemic strokes potentially eligible and actually treated with IVT, and to explore the reasons for not administering IVT. We prospectively collected and analyzed data from 1184 consecutive ischemic stroke patients admitted to the 22 Stroke Units (SUs) of the Veneto region from September 18th to December 10th 2017. Patients were treated with IVT according to the current Italian guidelines. For untreated patients, the reasons for not administering IVT were reported by each center in a predefined model including absolute and/or relative exclusion criteria and other possible reasons. Out of 841 (71%) patients who presented within 4.5 h of stroke onset, 704 (59%) had no other absolute exclusion criteria and were therefore potentially eligible for IVT according to the current guidelines. However, only 323 (27%) patients were eventually treated with IVT. Among 861 (73%) untreated patients, 480 had at least one absolute exclusion criterion, 283 only relative exclusion criteria, 56 only other reasons, and 42 a combination of relative exclusion criteria and other reasons. Our study showed that only 46% (323/704) of the potentially eligible patients were actually treated with IVT in the SUs of the Veneto region. All healthcare professionals involved in the acute stroke pathway should make an effort to bridge this gap between eligibility and reality.


Assuntos
Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/métodos , Administração Intravenosa , Idoso , Isquemia Encefálica , Feminino , Pessoal de Saúde/educação , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto
18.
J Am Chem Soc ; 140(38): 12090-12101, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30145887

RESUMO

Practical implementation of highly coherent molecular spin qubits for challenging technological applications, such as quantum information processing or quantum sensing, requires precise organization of electronic qubit molecular components into extended frameworks. Realization of spatial control over qubit-qubit distances can be achieved by coordination chemistry approaches through an appropriate choice of the molecular building blocks. However, translating single qubit molecular building units into extended arrays does not guarantee a priori retention of long quantum coherence and spin-lattice relaxation times due to the introduced modifications over qubit-qubit reciprocal distances and molecular crystal lattice phonon structure. In this work, we report the preparation of a three-dimensional (3D) metal-organic framework (MOF) based on vanadyl qubits, [VO(TCPP-Zn2-bpy)] (TCPP = tetracarboxylphenylporphyrinate; bpy = 4,4'-bipyridyl) (1), and the investigation of how such structural modifications influence qubits' performances. This has been done through a multitechnique approach where the structure and properties of a representative molecular building block of formula [VO(TPP)] (TPP = tetraphenylporphyrinate) (2) have been compared with those of the 3D MOF 1. Pulsed electron paramagnetic resonance measurements on magnetically diluted samples in titanyl isostructural analogues revealed that coherence times are retained almost unchanged for 1 with respect to 2 up to room temperature, while the temperature dependence of the spin-lattice relaxation time revealed insights into the role of low-energy vibrations, detected through terahertz spectroscopy, on the spin dynamics.

19.
Inorg Chem ; 57(2): 731-740, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29280628

RESUMO

Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 µs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

20.
Inorg Chem ; 57(18): 11393-11403, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30160486

RESUMO

The distorted tetrahedral [V(OAd)4] alkoxide (OAd = 1-adamantoxide, complex 1) is the first homoleptic, mononuclear vanadium(IV) alkoxide to be characterized in the solid state by X-ray diffraction analysis. The compound crystallizes in the cubic P4̅3 n space group with two highly disordered, crystallographically independent molecules in the asymmetric unit. Spin Hamiltonian parameters extracted from low temperature X- and Q-band electron paramagnetic resonance (EPR) experiments performed for polycrystalline samples of 1, both in the concentrated (bulk) form and diluted in the diamagnetic [Ti(OAd)4] analogue, reveal a fully axial system with g z < g x, g y and A z ≫ A x, A y. Complex 1 has also been characterized by alternate current susceptometry with varying temperature (3-30 K) and static magnetic field (up to 8.5 T), showing field-induced slow relaxation of the magnetization with relaxation times ranging from ca. 3 ms at 3 K to 0.02-0.03 ms at 30 K, in line with relevant results described recently for other potential molecular quantum bits. Pulsed EPR measurements, in turn, disclosed long coherence times of ca. 4 µs at temperatures lower than 40 K, despite the presence of the H-rich ligands. The slow spin relaxation in 1 is the first observed for a tetracoordinate nonoxido vanadium(IV) complex, and results are compared here to those generated by square-pyramidal VIV(O)2+ and trigonal prismatic V4+ with oxygen donor atom sets. Considering that the number of promising d1 complexes investigated in detail for slow magnetization dynamics is still small, the present work contributes to the establishment of possible structural/electronic correlations of interest to the field of quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA