Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805504

RESUMO

Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Epigênese Genética , Proteínas de Choque Térmico HSP90 , Histonas , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Memória Epigenética , Fatores de Transcrição
2.
Nat Plants ; 7(6): 800-813, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135484

RESUMO

The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.


Assuntos
Flores/genética , Perfilação da Expressão Gênica/métodos , Meristema/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Simulação por Computador , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA