Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(4): e1010019, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377875

RESUMO

Microfluidic capacities for both recreating and monitoring cell cultures have opened the door to the use of Data Science and Machine Learning tools for understanding and simulating tumor evolution under controlled conditions. In this work, we show how these techniques could be applied to study Glioblastoma, the deadliest and most frequent primary brain tumor. In particular, we study Glioblastoma invasion using the recent concept of Physically-Guided Neural Networks with Internal Variables (PGNNIV), able to combine data obtained from microfluidic devices and some physical knowledge governing the tumor evolution. The physics is introduced in the network structure by means of a nonlinear advection-diffusion-reaction partial differential equation that models the Glioblastoma evolution. On the other hand, multilayer perceptrons combined with a nodal deconvolution technique are used for learning the go or grow metabolic behavior which characterises the Glioblastoma invasion. The PGNNIV is here trained using synthetic data obtained from in silico tests created under different oxygenation conditions, using a previously validated model. The unravelling capacity of PGNNIV enables discovering complex metabolic processes in a non-parametric way, thus giving explanatory capacity to the networks, and, as a consequence, surpassing the predictive power of any parametric approach and for any kind of stimulus. Besides, the possibility of working, for a particular tumor, with different boundary and initial conditions, permits the use of PGNNIV for defining virtual therapies and for drug design, thus making the first steps towards in silico personalised medicine.


Assuntos
Glioblastoma , Glioblastoma/patologia , Humanos , Aprendizado de Máquina , Processos Neoplásicos , Redes Neurais de Computação , Física
2.
Bull Math Biol ; 85(10): 98, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684435

RESUMO

As motivated by studies of cellular motility driven by spatiotemporal chemotactic gradients in microdevices, we develop a framework for constructing approximate analytical solutions for the location, speed and cellular densities for cell chemotaxis waves in heterogeneous fields of chemoattractant from the underlying partial differential equation models. In particular, such chemotactic waves are not in general translationally invariant travelling waves, but possess a spatial variation that evolves in time, and may even oscillate back and forth in time, according to the details of the chemotactic gradients. The analytical framework exploits the observation that unbiased cellular diffusive flux is typically small compared to chemotactic fluxes and is first developed and validated for a range of exemplar scenarios. The framework is subsequently applied to more complex models considering the chemoattractant dynamics under more general settings, potentially including those of relevance for representing pathophysiology scenarios in microdevice studies. In particular, even though solutions cannot be constructed in all cases, a wide variety of scenarios can be considered analytically, firstly providing global insight into the important mechanisms and features of cell motility in complex spatiotemporal fields of chemoattractant. Such analytical solutions also provide a means of rapid evaluation of model predictions, with the prospect of application in computationally demanding investigations relating theoretical models and experimental observation, such as Bayesian parameter estimation.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Teorema de Bayes , Técnicas de Cultura de Células , Fatores Quimiotáticos
3.
Comput Biol Med ; 180: 108866, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089107

RESUMO

Drug resistance is one of the biggest challenges in the fight against cancer. In particular, in the case of glioblastoma, the most lethal brain tumour, resistance to temozolomide (the standard of care drug for chemotherapy in this tumour) is one of the main reasons behind treatment failure and hence responsible for the poor prognosis of patients diagnosed with this disease. In this work, we combine the power of three-dimensional in vitro experiments of treated glioblastoma spheroids with mathematical models of tumour evolution and adaptation. We use a novel approach based on internal variables for modelling the acquisition of resistance to temozolomide that was observed in experiments for a group of treated spheroids. These internal variables describe the cell's phenotypic state, which depends on the history of drug exposure and affects cell behaviour. We use model selection to determine the most parsimonious model and calibrate it to reproduce the experimental data, obtaining a high level of agreement between the in vitro and in silico outcomes. A sensitivity analysis is carried out to investigate the impact of each model parameter in the predictions. More importantly, we show how the model is useful for answering biological questions, such as what is the intrinsic adaptation mechanism, or for separating the sensitive and resistant populations. We conclude that the proposed in silico framework, in combination with experiments, can be useful to improve our understanding of the mechanisms behind drug resistance in glioblastoma and to eventually set some guidelines for the design of new treatment schemes.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Modelos Biológicos , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Dacarbazina/farmacologia , Simulação por Computador , Adaptação Fisiológica
4.
Comput Biol Med ; 164: 107291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586203

RESUMO

Cellular adaptation is the ability of cells to change in response to different stimuli and environmental conditions. It occurs via phenotypic plasticity, that is, changes in gene expression derived from changes in the physiological environment. This phenomenon is important in many biological processes, in particular in cancer evolution and its treatment. Therefore, it is crucial to understand the mechanisms behind it. Specifically, the emergence of the cancer stem cell phenotype, showing enhanced proliferation and invasion rates, is an essential process in tumour progression. We present a mathematical framework to simulate phenotypic heterogeneity in different cell populations as a result of their interaction with chemical species in their microenvironment, through a continuum model using the well-known concept of internal variables to model cell phenotype. The resulting model, derived from conservation laws, incorporates the relationship between the phenotype and the history of the stimuli to which cells have been subjected, together with the inheritance of that phenotype. To illustrate the model capabilities, it is particularised for glioblastoma adaptation to hypoxia. A parametric analysis is carried out to investigate the impact of each model parameter regulating cellular adaptation, showing that it permits reproducing different trends reported in the scientific literature. The framework can be easily adapted to any particular problem of cell plasticity, with the main limitation of having enough cells to allow working with continuum variables. With appropriate calibration and validation, it could be useful for exploring the underlying processes of cellular adaptation, as well as for proposing favourable/unfavourable conditions or treatments.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Adaptação Fisiológica/genética , Fenótipo , Neoplasias/genética , Biologia , Evolução Biológica , Microambiente Tumoral
5.
Comput Biol Med ; 135: 104547, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139437

RESUMO

The broad possibilities offered by microfluidic devices in relation to massive data monitoring and acquisition open the door to the use of deep learning technologies in a very promising field: cell culture monitoring. In this work, we develop a methodology for parameter identification in cell culture from fluorescence images using Convolutional Neural Networks (CNN). We apply this methodology to the in vitro study of glioblastoma (GBM), the most common, aggressive and lethal primary brain tumour. In particular, the aim is to predict the three parameters defining the go or grow GBM behaviour, which is determinant for the tumour prognosis and response to treatment. The data used to train the network are obtained from a mathematical model, previously validated with in vitro experimental results. The resulting CNN provides remarkably accurate predictions (Pearson's ρ > 0.99 for all the parameters). Besides, it proves to be sound, to filter noise and to generalise. After training and validation with synthetic data, we predict the parameters corresponding to a real image of a microfluidic experiment. The obtained results show good performance of the CNN. The proposed technique may set the first steps towards patient-specific tools, able to predict in real-time the tumour evolution for each particular patient, thanks to a combined in vitro-in silico approach.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Dispositivos Lab-On-A-Chip , Redes Neurais de Computação
6.
Sci Rep ; 10(1): 21193, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273574

RESUMO

In silico models and computer simulation are invaluable tools to better understand complex biological processes such as cancer evolution. However, the complexity of the biological environment, with many cell mechanisms in response to changing physical and chemical external stimuli, makes the associated mathematical models highly non-linear and multiparametric. One of the main problems of these models is the determination of the parameters' values, which are usually fitted for specific conditions, making the conclusions drawn difficult to generalise. We analyse here an important biological problem: the evolution of hypoxia-driven migratory structures in Glioblastoma Multiforme (GBM), the most aggressive and lethal primary brain tumour. We establish a mathematical model considering the interaction of the tumour cells with oxygen concentration in what is called the go or grow paradigm. We reproduce in this work three different experiments, showing the main GBM structures (pseudopalisade and necrotic core formation), only changing the initial and boundary conditions. We prove that it is possible to obtain versatile mathematical tools which, together with a sound parametric analysis, allow to explain complex biological phenomena. We show the utility of this hybrid "biomimetic in vitro-in silico" platform to help to elucidate the mechanisms involved in cancer processes, to better understand the role of the different phenomena, to test new scientific hypotheses and to design new data-driven experiments.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Dispositivos Lab-On-A-Chip , Modelos Teóricos , Hipóxia Celular , Proliferação de Células , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA