RESUMO
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Assuntos
Evolução Molecular Direcionada , Streptococcus pneumoniae/fisiologia , Simulação por Computador , Modelos Biológicos , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologiaRESUMO
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.
Assuntos
Cólera/microbiologia , Ecossistema , Filogenia , Vibrio cholerae O1/classificação , Ásia/epidemiologia , Cólera/epidemiologia , Cólera/genética , Cólera/patologia , Surtos de Doenças , Genoma Bacteriano/genética , Haiti/epidemiologia , Humanos , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidade , Microbiologia da ÁguaRESUMO
In the United States, the introduction of the heptavalent pneumococcal conjugate vaccine (PCV) largely eliminated vaccine serotypes (VT); non-vaccine serotypes (NVT) subsequently increased in carriage and disease. Vaccination also disrupts the composition of the pneumococcal pangenome, which includes mobile genetic elements and polymorphic non-capsular antigens important for virulence, transmission, and pneumococcal ecology. Antigenic proteins are of interest for future vaccines; yet, little is known about how the they are affected by PCV use. To investigate the evolutionary impact of vaccination, we assessed recombination, evolution, and pathogen demographic history of 937 pneumococci collected from 1998-2012 among Navajo and White Mountain Apache Native American communities. We analyzed changes in the pneumococcal pangenome, focusing on metabolic loci and 19 polymorphic protein antigens. We found the impact of PCV on the pneumococcal population could be observed in reduced diversity, a smaller pangenome, and changing frequencies of accessory clusters of orthologous groups (COGs). Post-PCV7, diversity rebounded through clonal expansion of NVT lineages and inferred in-migration of two previously unobserved lineages. Accessory COGs frequencies trended toward pre-PCV7 values with increasing time since vaccine introduction. Contemporary frequencies of protein antigen variants are better predicted by pre-PCV7 values (1998-2000) than the preceding period (2006-2008), suggesting balancing selection may have acted in maintaining variant frequencies in this population. Overall, we present the largest genomic analysis of pneumococcal carriage in the United States to date, which includes a snapshot of a true vaccine-naïve community prior to the introduction of PCV7. These data improve our understanding of pneumococcal evolution and emphasize the need to consider pangenome composition when inferring the impact of vaccination and developing future protein-based pneumococcal vaccines.
Assuntos
Genoma Bacteriano , Vacina Pneumocócica Conjugada Heptavalente/administração & dosagem , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Sorogrupo , Streptococcus pneumoniae/imunologia , Adolescente , Adulto , Idoso , Criança , Genética Populacional , Humanos , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Filogenia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Dinâmica Populacional , Estudos Prospectivos , Sorotipagem , Streptococcus pneumoniae/genética , Vacinação , Adulto JovemRESUMO
Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.
Assuntos
Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Teorema de Bayes , Portador Sadio/epidemiologia , Evolução Molecular , Genética Populacional/métodos , Humanos , Filogenia , Infecções Pneumocócicas/transmissão , Vacinas Pneumocócicas/imunologia , Dinâmica Populacional , Prevalência , Sorogrupo , Sorotipagem/métodos , Streptococcus pneumoniae/patogenicidade , Vacinas Conjugadas , Sequenciamento Completo do Genoma/métodosRESUMO
Background: Several Streptococcus pneumoniae proteins play a role in pathogenesis and are being investigated as vaccine targets. It is largely unknown whether naturally acquired antibodies reduce the risk of colonization with strains expressing a particular antigenic variant. Methods: Serum immunoglobulin G (IgG) titers to 28 pneumococcal protein antigens were measured among 242 individuals aged <6 months-78 years in Native American communities between 2007 and 2009. Nasopharyngeal swabs were collected >- 30 days after serum collection, and the antigen variant in each pneumococcal isolate was determined using genomic data. We assessed the association between preexisting variant-specific antibody titers and subsequent carriage of pneumococcus expressing a particular antigen variant. Results: Antibody titers often increased across pediatric groups before decreasing among adults. Individuals with low titers against group 3 pneumococcal surface protein C (PspC) variants were more likely to be colonized with pneumococci expressing those variants. For other antigens, variant-specific IgG titers do not predict colonization. Conclusion: We observed an inverse association between variant-specific antibody concentration and homologous pneumococcal colonization for only 1 protein. Further assessment of antibody repertoires may elucidate the nature of antipneumococcal antibody-mediated mucosal immunity while informing vaccine development.
Assuntos
Fatores Etários , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/sangue , Infecções Pneumocócicas/sangue , Adolescente , Adulto , Idoso , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/sangue , Portador Sadio/imunologia , Portador Sadio/microbiologia , Criança , Pré-Escolar , Seguimentos , Proteínas de Choque Térmico/sangue , Humanos , Imunoglobulina G/sangue , Lactente , Modelos Logísticos , Estudos Longitudinais , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Infecções Pneumocócicas/imunologia , Estudos Prospectivos , Adulto JovemRESUMO
Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.
Assuntos
Proteção Cruzada , Interleucina-17/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Salmonella typhimurium/química , Streptococcus pneumoniae/imunologia , Células Th17/imunologia , Administração Intranasal , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Simulação por Computador , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos/isolamento & purificação , Genes MHC da Classe II , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Interleucina-17/biossíntese , Lipopolissacarídeos/imunologia , Camundongos , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/química , Salmonella typhimurium/imunologia , Vesículas Secretórias/química , Vesículas Secretórias/imunologia , VacinaçãoRESUMO
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) USA300 is the leading cause of MRSA infections in the United States and has caused an epidemic of skin and soft-tissue infections. Recurrent infections with USA300 MRSA are common, yet intrahost evolution during persistence on an individual has not been studied. This gap hinders the ability to clinically manage recurrent infections and reconstruct transmission networks. METHODS: To characterize bacterial intrahost evolution, we examined the clinical courses of 4 subjects with 3-6 recurrent USA300 MRSA infections, using patient clinical data, including antibiotic exposure history, and whole-genome sequencing and phylogenetic analysis of all available MRSA isolates (n = 29). RESULTS: Among sequential isolates, we found variability in diversity, accumulation of mutations, and mobile genetic elements. Selection for antimicrobial-resistant populations was observed through both an increase in the number of plasmids conferring multidrug resistance and strain replacement by a resistant population. Two of 4 subjects had strain replacement with a genetically distinct USA300 MRSA population. DISCUSSIONS: During a 5-year period in 4 subjects, we identified development of antimicrobial resistance, intrahost evolution, and strain replacement among isolates from patients with recurrent MRSA infections. This calls into question the efficacy of decolonization to prevent recurrent infections and highlights the adaptive potential of USA300 and the need for effective sampling.
Assuntos
Evolução Molecular , Genótipo , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções dos Tecidos Moles/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Adulto , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Feminino , Variação Genética , Genoma Bacteriano , Humanos , Lactente , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Pessoa de Meia-Idade , Filogenia , Plasmídeos/análise , Estudos Prospectivos , Recidiva , Análise de Sequência de DNARESUMO
Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation in clinical isolates impedes our abilities to effectively predict K. pneumoniae infection outcomes. These traits are also associated with fitness in natural populations and more specifically within a host. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates encountered in the clinics today. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation abilities, percent mucoviscosity, and growth rates. We found most isolates formed limited biofilm, although a select group of isolates could form extremely robust biofilms. Variation in biofilm formation could not be explained by difference in growth rate, suggesting specific genetic and physical determinants. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Finally, confocal microscopy highlighted the structural and spatial heterogeneity of biofilm among the most robust biofilm formers not detected by traditional methods. The combination of phenotypic, genomic and image analyses allowed us to reveal an unexpected phenotypic diversity and an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.
RESUMO
Metagenomic sequencing analysis is central to investigating microbial communities in clinical and environmental studies. Short-read sequencing remains the primary approach for metagenomic research; however, long-read sequencing may offer advantages of improved metagenomic assembly and resolved taxonomic identification. To compare the relative performance for metagenomic studies, we simulated short- and long-read datasets using increasingly complex metagenomes comprising 10, 20, and 50 microbial taxa. Additionally, we used an empirical dataset of paired short- and long-read data generated from mouse fecal pellets to assess real-world performance. We compared metagenomic assembly quality, taxonomic classification, and metagenome-assembled genome (MAG) recovery rates. We show that long-read sequencing data significantly improve taxonomic classification and assembly quality. Metagenomic assemblies using simulated long reads were more complete and more contiguous with higher rates of MAG recovery. This resulted in more precise taxonomic classifications. Principal component analysis of empirical data demonstrated that sequencing technology affects compositional results as samples clustered by sequence type, not sample type. Overall, we highlight strengths of long-read metagenomic sequencing for microbiome studies, including improving the accuracy of classification and relative abundance estimates. These results will aid researchers when considering which sequencing approaches to use for metagenomic projects.
RESUMO
Environmental testing of high-touch objects is a potential noninvasive approach for monitoring population-level trends of SARS-CoV-2 and other respiratory viruses within a defined setting. We aimed to determine the association between SARS-CoV-2 contamination on high-touch environmental surfaces, community level case incidence, and university student health data. Environmental swabs were collected from January 2022 to November 2022 from high-touch objects and surfaces from five locations on a large university campus in Florida, USA. RT-qPCR was used to detect and quantify viral RNA, and a subset of positive samples was analyzed by viral genome sequencing to identify circulating lineages. During the study period, we detected SARS-CoV-2 viral RNA on 90.7 % of 162 tested samples. Levels of environmental viral RNA correlated with trends in community-level activity and case reports from the student health center. A significant positive correlation was observed between the estimated viral gene copy number in environmental samples and the weekly confirmed cases at the university. Viral sequencing data from environmental samples identified lineages concurrently circulating in the local community and state based on genomic surveillance data. Further, we detected emerging variants in environmental samples prior to their identification by clinical genomic surveillance. Our results demonstrate the utility of viral monitoring on high-touch environmental surfaces for SARS-CoV-2 surveillance at a community level. In communities with delayed or limited testing facilities, immediate environmental surface testing may considerably inform epidemic dynamics.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Universidades , Contaminação de Medicamentos , RNA ViralRESUMO
Background. Despite use of highly effective conjugate vaccines, invasive pneumococcal disease (IPD) remains a leading cause of morbidity and mortality and disproportionately affects Indigenous populations. Although included in the 13-valent pneumococcal conjugate vaccine (PCV13), which was introduced in 2010, serotype 3 continues to cause disease among Indigenous communities in the Southwest USA. In the Navajo Nation, serotype 3 IPD incidence increased among adults (3.8/100 000 in 2001-2009 and 6.2/100 000 in 2011-2019); in children the disease persisted although the rates dropped from 5.8/100 000 to 2.3/100 000.Methods. We analysed the genomic epidemiology of serotype 3 isolates collected from 129 adults and 63 children with pneumococcal carriage (n=61) or IPD (n=131) from 2001 to 2018 of the Navajo Nation. Using whole-genome sequencing data, we determined clade membership and assessed changes in serotype 3 population structure over time.Results. The serotype 3 population structure was characterized by three dominant subpopulations: clade II (n=90, 46.9â%) and clade Iα (n=59, 30.7â%), which fall into Clonal Complex (CC) 180, and a non-CC180 clade (n=43, 22.4â%). The proportion of clade II-associated IPD cases increased significantly from 2001 to 2010 to 2011-2018 among adults (23.1-71.8â%; P<0.001) but not in children (27.3-33.3â%; P=0.84). Over the same period, the proportion of clade II-associated carriage increased; this was statistically significant among children (23.3-52.6â%; P=0.04) but not adults (0-50.0â%, P=0.08).Conclusions. In this setting with persistent serotype 3 IPD and carriage, clade II has increased since 2010. Genomic changes may be contributing to the observed trends in serotype 3 carriage and disease over time.
Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Adulto , Humanos , Vacinas Conjugadas , Sorogrupo , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , IncidênciaRESUMO
BACKGROUND: Italy was significantly affected by the COVID-19 pandemic, experiencing multiple waves of infection following the sequential emergence of new variants. Understanding the transmission patterns and evolution of SARS-CoV-2 is vital for future preparedness. METHODS: We conducted an analysis of viral genome sequences, integrating epidemiological and phylodynamic approaches, to characterize how SARS-CoV-2 variants have spread within the country. RESULTS: Our findings indicate bidirectional international transmission, with Italy transitioning between importing and exporting the virus. Italy experienced four distinct epidemic waves, each associated with a significant reduction in fatalities from 2021 to 2023. These waves were primarily driven by the emergence of VOCs such as Alpha, Delta, and Omicron, which were reflected in observed transmission dynamics and effectiveness of public health measures. CONCLUSIONS: The changing patterns of viral spread and variant prevalence throughout Italy's pandemic response underscore the continued importance of flexible public health strategies and genomic surveillance, both of which are crucial for tracking the evolution of variants and adapting control measures effectively to ensure preparedness for future outbreaks.
RESUMO
In a companion paper, we demonstrated that the nucleoside analogue favipiravir (FAV) suppressed Zika virus (ZIKV) replication in three human-derived cell lines-HeLa, SK-N-MC, and HUH-7. Our results revealed that FAV's effect was most pronounced in HeLa cells. In this work, we aimed to explain variation in FAV activity, investigating its mechanism of action and characterizing host cell factors relevant to tissue-specific differences in drug effect. Using viral genome sequencing, we show that FAV therapy was associated with an increase in the number of mutations and promoted the production of defective viral particles in all three cell lines. Our findings demonstrate that defective viral particles made up a larger portion of the viral population released from HeLa cells both at increasing FAV concentrations and at increasing exposure times. Taken together, our companion papers show that FAV acts via lethal mutagenesis against ZIKV and highlight the host cell's influence on the activation and antiviral activity of nucleoside analogues. Furthermore, the information gleaned from these companion papers can be applied to gain a more comprehensive understanding of the activity of nucleoside analogues and the impact of host cell factors against other viral infections for which we currently have no approved antiviral therapies.
RESUMO
Viral genomic surveillance has been integral in the global response to the SARS-CoV-2 pandemic. Surveillance efforts rely on the availability of representative clinical specimens from ongoing testing activities. However, testing practices have recently shifted due to the widespread availability and use of rapid antigen tests, which could lead to gaps in future monitoring efforts. As such, genomic surveillance strategies must adapt to include laboratory workflows that are robust to sample type. To that end, we compare the results of RT-qPCR and viral genome sequencing using samples from positive BinaxNOW COVID-19 Antigen Card swabs (N = 555) to those obtained from nasopharyngeal (NP) swabs used for nucleic acid amplification testing (N = 135). We show that swabs obtained from antigen cards are comparable in performance to samples from NP swabs, providing a viable alternative and allowing for the potential expansion of viral genomic surveillance to outpatient clinic as well as other settings where rapid antigen tests are often used.
Assuntos
COVID-19 , Cardiologia , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Instituições de Assistência Ambulatorial , NasofaringeRESUMO
Antibiotic resistance is a significant global health concern that affects both human and animal populations. The One Health approach acknowledges the interconnectedness of human health, animal health, and the environment. It emphasizes the importance of collaboration and coordination across these sectors to tackle complex health challenges such as antibiotic resistance. In the context of One Health, antibiotic resistance refers to the ability of bacteria to withstand the efficacy of antibiotics, rendering them less effective or completely ineffective in treating infections. The emergence and spread of antibiotic-resistant bacteria pose a threat to human and animal health, as well as to the effectiveness of medical treatments and veterinary interventions. In particular, One Health recognizes that antibiotic use in human medicine, animal agriculture, and the environment are interconnected factors contributing to the development and spread of antibiotic resistance. For example, the misuse and overuse of antibiotics in human healthcare, including inappropriate prescribing and patient non-compliance, can contribute to the selection and spread of resistant bacteria. Similarly, the use of antibiotics in livestock production for growth promotion and disease prevention can contribute to the development of antibiotic resistance in animals and subsequent transmission to humans through the food chain. Addressing antibiotic resistance requires a collaborative One Health approach that involves multiple participants, including healthcare professionals, veterinarians, researchers, and policymakers.
RESUMO
The secreted proteases of Staphylococcus aureus have been shown to be critical during infection. Here, we present the draft genome sequence of S. aureus TGH337, a hyper-proteolytic USA300 strain isolated from human urine.
RESUMO
The lack of routine viral genomic surveillance delayed the initial detection of SARS-CoV-2, allowing the virus to spread unfettered at the outset of the U.S. epidemic. Over subsequent months, poor surveillance enabled variants to emerge unnoticed. Against this backdrop, long-standing social and racial inequities have contributed to a greater burden of cases and deaths among minority groups. To begin to address these problems, we developed a new variant surveillance model geared toward building 'next generation' genome sequencing capacity at universities in or near rural areas and engaging the participation of their local communities. The resulting genomic surveillance network has generated more than 1,000 SARS-CoV-2 genomes to date, including the first confirmed case in northeast Louisiana of Omicron, and the first and sixth confirmed cases in Georgia of the emergent BA.2.75 and BQ.1.1 variants, respectively. In agreement with other studies, significantly higher viral gene copy numbers were observed in Delta variant samples compared to those from Omicron BA.1 variant infections, and lower copy numbers were seen in asymptomatic infections relative to symptomatic ones. Collectively, the results and outcomes from our collaborative work demonstrate that establishing genomic surveillance capacity at smaller academic institutions in rural areas and fostering relationships between academic teams and local health clinics represent a robust pathway to improve pandemic readiness.
RESUMO
BACKGROUND: Little is known about HIV-1 subtype distribution in Morocco. Some data suggest an emergence of new HIV subtypes. We conducted phylogenetic analysis on a nationally representative sample of 60 HIV-1 viral specimens collected during 2004-2005 through the Morocco national HIV sentinel surveillance survey. RESULTS: While subtype B is still the most prevalent, 23.3% of samples represented non-B subtypes, the majority of which were classified as CRF02_AG (15%). Molecular clock analysis confirmed that the initial introduction of HIV-1B in Morocco probably came from Europe in the early 1980s. In contrast, the CRF02_AG strain appeared to be introduced from sub-Saharan Africa in two separate events in the 1990s. CONCLUSIONS: Subtype CRF02_AG has been emerging in Morocco since the 1990s. More information about the factors introducing HIV subtype-specific transmission will inform the prevention strategy in the region.
RESUMO
Population genomic analysis is a powerful tool to understand the evolutionary history of pathogens and the factors contributing to the success or failure of lineages. These studies have significant implications for human health, as evident from our ongoing tracking of SARS-CoV-2. In their article, Gill et al. (J. L. Gill, J. Hedge, D. J. Wilson, and R. C. MacLean, mBio 12:e02168-21, 2021, https://doi.org/10.1128/mBio.02168-21) demonstrate the utility of pathogen genomic data by comprehensively elucidating the origin of methicillin-resistant Staphylococcus aureus ST239. To accomplish this, they leveraged newly developed tools for querying large genomic data sets. Overall, these analyses rely on the availability of representative genomic data along with their associated metadata-information about where and when samples were collected, clinical and epidemiological characteristics, and phenotypic properties. However, in many instances, these data are missing. Here, I borrow the term "meaningful use" from the Health IT field to describe the need to maximize the utility of genomic data and make suggestions for how to address the current limitations.