Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503568

RESUMO

AIMS: The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS: Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS: Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Polímeros/farmacologia , Pirróis/farmacologia , Simulação de Acoplamento Molecular , Oxacilina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
2.
Cell Mol Neurobiol ; 42(3): 557-564, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33010018

RESUMO

Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging knowledge from this work will benefit the development of therapies for gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Morfogênese , Neovascularização Patológica/patologia , Pericitos/patologia , Microambiente Tumoral
3.
Arch Microbiol ; 204(12): 715, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36400871

RESUMO

Bacillus subtilis (BS) has been used as an excellent probiotic; however, some BS strains seem to be opportunist pathogens or do not present inhibitory effects in the pathogenic bacteria, so the characterization of BS strains for use in animals is mandatory. This study aimed to select nonpathogenic strains of BS, which can inhibit Salmonella spp., avian pathogenic Escherichia coli (APEC), and Campylobacter jejuni (CJ) using a chicken embryo as a model. We tested nine (9) strains of BS isolated from several sources (named A to I) in in vitro by tests of mucin degradation activity, haemolytic activity, apoptosis, and necrosis in fibroblasts from chickens. After the in vitro test, we tested the remaining seven (7) strains (strains A to G) in a chicken embryo (CE) as an in vivo model and target animal. We inoculated 3 log CFU/CE of each strain via allantoic fluid at the 10th day postincubation (DPI). Each treatment group consisted of eight CEs. At the 17th DPI we checked CE mortality, gross lesions, CE weight, and whether BS strains were still viable. To perform the cytokine, total protein, albumin, and reactive C protein analysis, we collected the CE blood from the allantoic vessel and intestine fragments in the duodenum portion for histomorphometric analysis. After the results in CEs, we tested the inhibition capacity of the selected BS strains for diverse strains of Salmonella  Heidelberg (SH), S. Typhimurium (ST), S. Enteritidis (SE), S. Minnesota (SM), S. Infantis (SI), Salmonella var. monophasic (SVM), APEC and C. jejuni. After the in vitro trial (mucin degradation activity, haemolytic activity, apoptosis, and necrosis), we removed two (2) strains (H and I) that showed ß-haemolysis, mucin degradation, and/or high apoptosis and necrosis effects. Although all strains of BS were viable in CEs at the 17th DPI, we removed four (4) strains (A, B, D, F) once they led to the highest mortality in CEs or a high albumin/protein ratio. C. jejuni inoculated with strain G had greater weight than the commercial strain, which could be further used for egg inoculation with benefits to the CE. From the tests in CEs, we selected the strains C, E, and G for their ability to inhibit pathogenic strains of relevant foodborne pathogens. We found that the inhibition effect was strain dependent. In general, strains E and/or G presented better or similar results than commercial control strains in the inhibition of SH, ST, SI, APEC, and two (2) strains of CJ. In this study, we selected BS strains C, E and G due to their in vitro and in vivo safety and beneficial effects. In addition, we emphasize the value of CE as an in vivo experimental model for assessing BS's safety and possible benefits for poultry and other animals.


Assuntos
Campylobacter jejuni , Infecções por Escherichia coli , Probióticos , Embrião de Galinha , Animais , Galinhas/microbiologia , Bacillus subtilis , Escherichia coli , Mucinas , Necrose
4.
Genomics ; 110(6): 442-449, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30367926

RESUMO

Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.


Assuntos
Francisella/genética , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Francisella/classificação , Variação Genética , Genômica , Tipagem de Sequências Multilocus
5.
Mem Inst Oswaldo Cruz ; 113(2): 137-141, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29236926

RESUMO

A previous study by our group reported the isolation and characterisation of Leptospira borgpetersenii serogroup Ballum strain 4E. This strain is of particular interest because it is highly virulent in the hamster model. In this study, we performed whole-genome shotgun genome sequencing of the strain using the SOLiD sequencing platform. By assembling and analysing the new genome, we were able to identify novel features that have been previously overlooked in genome annotations of other strains belonging to the same species.


Assuntos
Leptospira/genética , Leptospira/patogenicidade , Virulência/genética , Animais , Leptospira/classificação , Camundongos
6.
Microb Cell Fact ; 15(1): 150, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576902

RESUMO

BACKGROUND: Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. RESULTS: The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. CONCLUSIONS: This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels of IL-10-secreting regulatory cells and, thus, demonstrating the effectiveness of this novel DNA delivery-based strategy.


Assuntos
Vetores Genéticos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/metabolismo , Interleucina-4/genética , Lactococcus lactis/genética , Animais , Células CHO , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , DNA/genética , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/prevenção & controle , Interleucina-4/imunologia , Interleucina-4/uso terapêutico , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Mucosa/imunologia , Mucosa/ultraestrutura , Transfecção
7.
Microbiology (Reading) ; 161(Pt 3): 639-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25635272

RESUMO

Corynebacterium diphtheriae is typically recognized as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen-host interaction. The molecular mechanisms controlling and facilitating internalization of Cor. diphtheriae are poorly understood. In this study, we investigated the role of DIP0733 as virulence factor to elucidate how it contributes to the process of pathogen-host cell interaction. Based on in vitro experiments, it was suggested recently that the DIP0733 protein might be involved in adhesion, invasion of epithelial cells and induction of apoptosis. A corresponding Cor. diphtheriae mutant strain generated in this study was attenuated in its ability to colonize and kill the host in a Caenorhabditis elegans infection model system. Furthermore, the mutant showed an altered adhesion pattern and a drastically reduced ability to adhere and invade epithelial cells. Subsequent experiments showed an influence of DIP0733 on binding of Cor. diphtheriae to extracellular matrix proteins such as collagen and fibronectin. Furthermore, based on its fibrinogen-binding activity, DIP0733 may play a role in avoiding recognition of Cor. diphtheriae by the immune system. In summary, our findings support the idea that DIP0733 is a multi-functional virulence factor of Cor. diphtheriae.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium diphtheriae/metabolismo , Difteria/microbiologia , Fatores de Virulência/metabolismo , Animais , Apoptose , Aderência Bacteriana , Proteínas de Bactérias/genética , Caenorhabditis elegans , Linhagem Celular , Corynebacterium diphtheriae/classificação , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/patogenicidade , Difteria/fisiopatologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Humanos , Filogenia , Fatores de Virulência/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38539008

RESUMO

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.

9.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674604

RESUMO

Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1ß (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.

10.
Front Microbiol ; 15: 1309160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680913

RESUMO

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

11.
Microb Cell Fact ; 12: 32, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23561053

RESUMO

BACKGROUND: Staphylococcus aureus is unrestrictedly found in humans and in animal species that maintain thermal homeostasis. Inadequate cleaning of processing equipment or inappropriate handling can contaminate processed food and cause severe food poisoning. Staphylococcal enterotoxin B (SEB), a potent superantigenic exotoxin, is produced by 50% of clinical isolates of S. aureus and is associated with massive food poisoning and with the induction of toxic shock syndrome. RESULTS: A gene sequence encoding a recombinant SEB (rSEB), devoid of superantigenic activity, was successfully cloned and expressed in a cytoplasmic or a secreted form in the food-grade lactic acid bacterium Lactococcus lactis. The recombinant protein detected in the cytoplasm or in the culture medium exhibited the expected molecular mass and was recognized by a SEB-polyclonal antibody. Oral immunization with the recombinant L. lactis strains induced a protective immune response in a murine model of S. aureus infection. Immunized mice survived intraperitoneal challenge with an S. aureus SEB-producer strain. Counts of S. aureus in the spleen of rSEB-immunized mice were significantly reduced. The rSEB-immunized mice showed significant titers of anti-SEB IgA and IgG in stools and serum, respectively. Both recombinant L. lactis strains were able to elicit cellular or systemic immune responses in mice, with no significant difference if rSEB was produced in its cytoplasmic or secreted form. However, recombinant L. lactis expressing the cytoplasmic rSEB increased the survival rate of the challenged mice by 43%. CONCLUSIONS: These findings show the vaccine efficacy of L. lactis carrying an attenuated SEB, in a murine model, following lethal S. aureus challenge.


Assuntos
Enterotoxinas/metabolismo , Lactococcus lactis/imunologia , Administração Oral , Animais , Anticorpos/metabolismo , Enterotoxinas/genética , Lactococcus lactis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/metabolismo
12.
Mem Inst Oswaldo Cruz ; 108(3)2013 05.
Artigo em Inglês | MEDLINE | ID: mdl-23778659

RESUMO

Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.


Assuntos
Infecções por Corynebacterium/diagnóstico , Infecções por Corynebacterium/microbiologia , Corynebacterium/genética , Toxina Diftérica/genética , Animais , Corynebacterium/classificação , DNA Bacteriano/genética , Humanos , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico 16S/genética
13.
Microlife ; 4: uqad029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324655

RESUMO

Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is Propionibacterium freudenreichii, which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with P. freudenreichii showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, P. freudenreichii was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of P. freudenreichii-derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.

14.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992103

RESUMO

Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.

15.
Antibiotics (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978487

RESUMO

Intensive Care Units (ICU) usually provide an excellent environment for the selection of pathogens associated with hospital-acquired infections (HAI), leading to increased mortality and hospitalization costs. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of HAI in dogs worldwide, but the risk factors and dynamics of colonization by MRSP are largely unknown. This study aimed to evaluate the risk factors associated with the acquisition of MRSP in dogs admitted to an ICU, and to report the antimicrobial resistance profiles and genetic relatedness of MRSP isolates. Sterile swabs from the nostril, axilla, and rectum were collected daily during the hospitalization of 54 dogs. Samples were subjected to Mannitol Salt Agar, and colonies were identified by MALDI-ToF, polymerase chain reaction (PCR), and sequencing of the rpoB gene. Antimicrobial susceptibility testing and PCR detection of mecA were performed. Staphylococcus spp. was isolated from 94% of the dogs, and the most frequently isolated species was S. pseudintermedius (88.2%). Carriage of multidrug resistant (MDR) staphylococci was observed in 64.4% of the dogs, and approximately 39% had methicillin-resistant Staphylococcus sp. (MRS), of which 21.6% had MRSP and 1.9% had methicillin-resistant S. aureus (MRSA). The acquisition of MRSP during ICU hospitalization was associated with sex (female), age (>7 years), and dogs that had previously been treated with antimicrobials. Animals colonized by MRSP resistant to ≥9 antimicrobial classes had longer hospital stays than those colonized by other MRS strains. Among the 13 MRSP isolates that were subjected to whole-genome sequencing, ten were classified as ST71. A single nucleotide polymorphism (SNP) analysis revealed three clones, including one that was detected in infected dogs outside the ICU. This study indicates novel risk factors associated with colonization by MRSP. The detection of the same MRSP clone causing HAI outside the ICU reinforces the need for improved infection prevention and control practices at veterinary hospitals in general and at the ICU in particular.

16.
Acta Trop ; 242: 106911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965612

RESUMO

Staphylococcus pseudintermedius is a zoonotic pathogen responsible for several infectious diseases in pet animals, yet its pathogenic potential is not fully understood. Thus, this study aims to unravel the virulence profile of S. pseudintermedius from canine origin. Methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains were isolated from different infection sites and their genotypic and phenotypic features were compared to determine the clinical implications of MRSP and MSSP strains. Bacterial identification was performed using MALDI-TOF and 16S-rDNA sequencing. In addition, we used multilocus sequence typing (MLST) for strains' sequence type (ST) determination and phylogenetic relationship. The strains were screened for toxin genes, including cytotoxins (lukS, lukF), exfoliative toxin (siet), enterotoxins (sea, seb, sec, secCanine, sel, sem, and seq) and toxic shock syndrome toxin (tst-1). In vitro phenotypic analyses assessing antimicrobial susceptibility profile, biofilm formation ability, and expression of extracellular matrix components were performed. The investigated S. pseudintermedius strains belong to 17 unique ST, most of which were classified as ST71. MSSP and MRSP strains shared siet, lukS, and lukF virulence markers. Our findings showed that some MSSP strains also harbored sel, seq, and sem enterotoxin genes, suggesting a more diverse virulence profile. All MRSP strains and 77% of MSSP strains were classified as multidrug resistant (MDR). Moreover, all investigated S. pseudintermedius strains showed strong biofilm formation ability. In summary, our findings highlight the wide spread of highly virulent and drug-resistant zoonotic S. pseudintermedius strains, being a potential concern for One Health issues.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Cães , Animais , Meticilina/farmacologia , Resistência a Meticilina/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Doenças do Cão/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Probiotics Antimicrob Proteins ; 15(1): 160-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36028786

RESUMO

Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.


Assuntos
Lactobacillus plantarum , Mucosite , Probióticos , Animais , Humanos , Camundongos , Antibacterianos/metabolismo , Brasil , Células CACO-2 , Fluoruracila , Lactobacillaceae , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia
18.
Antibiotics (Basel) ; 12(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370358

RESUMO

Aeromonas veronii is a Gram-negative bacterial species that causes disease in fish and is nowadays increasingly recurrent in enteric infections of humans. This study was performed to characterize newly sequenced isolates by comparing them with complete genomes deposited at the NCBI (National Center for Biotechnology Information). Nine isolates from fish, environments, and humans from the São Francisco Valley (Petrolina, Pernambuco, Brazil) were sequenced and compared with complete genomes available in public databases to gain insight into taxonomic assignment and to better understand virulence and resistance profiles of this species within the One Health context. One local genome and four NCBI genomes were misidentified as A. veronii. A total of 239 virulence genes were identified in the local genomes, with most encoding adhesion, motility, and secretion systems. In total, 60 genes involved with resistance to 22 classes of antibiotics were identified in the genomes, including mcr-7 and cphA. The results suggest that the use of methods such as ANI is essential to avoid misclassification of the genomes. The virulence content of A. veronii from local isolates is similar to those complete genomes deposited at the NCBI. Genes encoding colistin resistance are widespread in the species, requiring greater attention for surveillance systems.

19.
Microb Pathog ; 52(3): 165-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22239957

RESUMO

Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.


Assuntos
Apoptose , Corynebacterium diphtheriae/patogenicidade , Endocitose , Hemaglutininas/metabolismo , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Fatores de Virulência/metabolismo , Actinas/metabolismo , Linhagem Celular , Sobrevivência Celular , Corynebacterium diphtheriae/genética , Hemaglutininas/genética , Humanos , Multimerização Proteica , Fatores de Virulência/genética
20.
J Fungi (Basel) ; 8(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205897

RESUMO

Trametes villosa is a wood-decaying fungus with great potential to be used in the bioconversion of agro-industrial residues and to obtain high-value-added products, such as biofuels. Nonetheless, the lack of high-quality genomic data hampers studies investigating genetic mechanisms and metabolic pathways in T. villosa, hindering its application in industry. Herein, applying a hybrid assembly pipeline using short reads (Illumina HiSeq) and long reads (Oxford Nanopore MinION), we obtained a high-quality genome for the T. villosa CCMB561 and investigated its genetic potential for lignocellulose breakdown. The new genome possesses 143 contigs, N50 of 1,009,271 bp, a total length of 46,748,415 bp, 14,540 protein-coding genes, 22 secondary metabolite gene clusters, and 426 genes encoding Carbohydrate-Active enzymes. Our CAZome annotation and comparative genomic analyses of nine Trametes spp. genomes revealed T. villosa CCMB561 as the species with the highest number of genes encoding lignin-modifying enzymes and a wide array of genes encoding proteins for the breakdown of cellulose, hemicellulose, and pectin. These results bring to light the potential of this isolate to be applied in the bioconversion of lignocellulose and will support future studies on the expression, regulation, and evolution of genes, proteins, and metabolic pathways regarding the bioconversion of lignocellulosic residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA