Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 119(15): 3523-33, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22354003

RESUMO

Monoclonal antibodies (mAbs) have revolutionized the treatment of B-cell malignancies. Although Fc-dependent mechanisms of mAb-mediated tumor clearance have been extensively studied, the ability of mAbs to directly evoke programmed cell death (PCD) in the target cell and the underlying mechanisms involved remain under-investigated. We recently demonstrated that certain mAbs (type II anti-CD20 and anti-HLA DR mAbs) potently evoked PCD through an actin-dependent, lysosome-mediated process. Here, we reveal that the induction of PCD by these mAbs, including the type II anti-CD20 mAb GA101 (obinutuzumab), directly correlates with their ability to produce reactive oxygen species (ROS) in human B-lymphoma cell lines and primary B-cell chronic lymphocytic leukemia cells. ROS scavengers abrogated mAb-induced PCD indicating that ROS are required for the execution of cell death. ROS were generated downstream of mAb-induced actin cytoskeletal reorganization and lysosome membrane permeabilization. ROS production was independent of mitochondria and unaffected by BCL-2 overexpression. Instead, ROS generation was mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. These findings provide further insights into a previously unrecognized role for NADPH oxidase-derived ROS in mediating nonapoptotic PCD evoked by mAbs in B-cell malignancies. This newly characterized cell death pathway may potentially be exploited to eliminate malignant cells, which are refractory to conventional chemotherapy and immunotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Leucemia/patologia , Linfoma/patologia , Espécies Reativas de Oxigênio/farmacologia , Actinas/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/imunologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Cancers (Basel) ; 15(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509260

RESUMO

The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a microarray study on a prostate cancer cell line model of androgen independence following KMT5A knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was also observed in clinical prostate cancer samples, further supporting this association. Therefore, we conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20 could potentially be utilised as a biomarker for effective therapeutic targeting.

3.
Oncotarget ; 9(38): 24992-25007, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861848

RESUMO

Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.

4.
Oncogene ; 37(34): 4679-4691, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29755129

RESUMO

The TP53-MDM2-AR-AKT signalling network plays a critical role in the development and progression of prostate cancer. However, the molecular mechanisms regulating this signalling network are not completely defined. By conducting transcriptome analysis, denaturing immunoprecipitations and immunopathology, we demonstrate that the TP53-MDM2-AR-AKT cross-talk is regulated by the deubiquitinating enzyme USP12 in prostate cancer. Our findings explain why USP12 is one of the 12 most commonly overexpressed cancer-associated genes located near an amplified super-enhancer. We find that USP12 deubiquitinates MDM2 and AR, which in turn controls the levels of the TP53 tumour suppressor and AR oncogene in prostate cancer. Consequently, USP12 levels are predictive not only of cancer development but also of patient's therapy resistance, relapse and survival. Therefore, our findings suggest that USP12 could serve as a promising therapeutic target in currently incurable castrate-resistant prostate cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Masculino , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA