Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L627-L637, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375577

RESUMO

Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.


Assuntos
Pulmão , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Animais , Feminino , Masculino , Pulmão/crescimento & desenvolvimento , Camundongos , Peso Corporal , Caracteres Sexuais , Fatores Sexuais , Envelhecimento/fisiologia
2.
Br J Anaesth ; 131(3): 452-462, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37087333

RESUMO

BACKGROUND: Major cardiac surgery related blood loss is associated with increased postoperative morbidity and mortality. Platelet dysfunction is believed to contribute to post-cardiopulmonary bypass (CPB)-induced microvascular bleeding. We hypothesised that moderately hypothermic CPB induces platelet dysfunction and that supplemental fibrinogen can restore in vitro thrombus formation. METHODS: Blood from 18 patients, undergoing first-time elective isolated aortic valve surgery was drawn before CPB, 30 min after initiation of CPB, and after CPB and protamine administration, respectively. Platelet aggregation was quantified by optical aggregometry, platelet activation by flow-cytometric detection of platelet surface expression of P-selectin, annexin V, and activated glycoprotein IIb/IIIa, thrombus formation under flow and effect of supplemental fibrinogen (4 mg ml-1) on in vitro thrombogenesis. RESULTS: Post-CPB adenosine-diphosphate and TRAP-6-induced aggregation decreased by 40% and 10% of pre-CPB levels, respectively (P<0.0001). Although CPB did not change glycoprotein IIb/IIIa receptor expression, it increased the percentage of unstimulated P-selectin (1.2% vs 7%, P<0.01) positive cells and annexin V mean fluorescence intensity (15.5 vs 17.2, P<0.05), but decreased percentage of stimulated P-selectin (52% vs 26%, P<0.01) positive cells and annexin V mean fluorescence intensity (508 vs 325, P<0.05). Thrombus area decreased from 6820 before CPB to 5230 after CPB (P<0.05, arbitrary units [a.u.]). Supplemental fibrinogen increased thrombus formation to 20 324 and 11 367 a.u. before CPB and after CPB, respectively (P<0.001), thereby restoring post-CPB thrombus area to levels comparable with or higher than pre-CPB baseline. CONCLUSIONS: Single valve surgery using moderately hypothermic CPB induces partial platelet dysfunction. Thrombus formation was restored in an experimental study design by ex vivo supplementation of fibrinogen.


Assuntos
Hemostáticos , Trombose , Humanos , Ponte Cardiopulmonar/efeitos adversos , Selectina-P/farmacologia , Fibrinogênio , Anexina A5/farmacologia , Agregação Plaquetária , Trombose/etiologia
3.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998281

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Assuntos
Fibrose Pulmonar Idiopática , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases da Família src/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
J Allergy Clin Immunol ; 145(3): 818-833.e11, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812575

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E2 exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE2 metabolism under the control of TGF-ß and microRNA 218. OBJECTIVE: We sought to investigate the expression of 15-PGDH in IPF and the therapeutic potential of a specific inhibitor of this enzyme in a mouse model and human tissue. METHODS: In vitro studies, including fibrocyte differentiation, regulation of 15-PGDH, RT-PCR, and Western blot, were performed using peripheral blood from healthy donors and patients with IPF and A549 cells. Immunohistochemistry, immunofluorescence, 15-PGDH activity assays, and in situ hybridization as well as ex vivo IPF tissue culture experiments were done using healthy donor and IPF lungs. Therapeutic effects of 15-PGDH inhibition were studied in the bleomycin mouse model of pulmonary fibrosis. RESULTS: We demonstrate that 15-PGDH shows areas of increased expression in patients with IPF. Inhibition of this enzyme increases PGE2 levels and reduces collagen production in IPF precision cut lung slices and in the bleomycin model. Inhibitor-treated mice show amelioration of lung function, decreased alveolar epithelial cell apoptosis, and fibroblast proliferation. Pulmonary fibrocyte accumulation is also decreased by inhibitor treatment in mice, similar to PGE2 that inhibits fibrocyte differentiation from blood of healthy donors and patients with IPF. Finally, microRNA 218-5p, which is downregulated in patients with IPF, suppressed 15-PGDH expression in vivo and in vitro. CONCLUSIONS: These findings highlight the role of 15-PGDH in IPF and suggest 15-PGDH inhibition as a promising therapeutic approach.


Assuntos
Hidroxiprostaglandina Desidrogenases/metabolismo , Fibrose Pulmonar Idiopática/enzimologia , MicroRNAs/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dinoprostona/metabolismo , Eicosanoides/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/patologia , Camundongos , Piridinas/farmacologia , Tiofenos/farmacologia
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769126

RESUMO

Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Prostaglandina D2/metabolismo , Animais , Humanos , Camundongos
6.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769478

RESUMO

Placental hypervascularization has been reported in pregnancy-related pathologies such as gestational diabetes mellitus (GDM). Nevertheless, the underlying causes behind this abnormality are not well understood. In this study, we addressed the expression of SUCNR1 (cognate succinate receptor) in human placental endothelial cells and hypothesized that the succinate-SUCNR1 axis might play a role in the placental hypervascularization reported in GDM. We measured significantly higher succinate levels in placental tissue lysates from women with GDM relative to matched controls. In parallel, SUCNR1 protein expression was upregulated in GDM tissue lysates as well as in isolated diabetic fetoplacental arterial endothelial cells (FpECAds). A positive correlation of SUCNR1 and vascular endothelial growth factor (VEGF) protein levels in tissue lysates indicated a potential link between the succinate-SUCNR1 axis and placental angiogenesis. In our in vitro experiments, succinate prompted hallmarks of angiogenesis in human umbilical vein endothelial cells (HUVECs) such as proliferation, migration and spheroid sprouting. These results were further validated in fetoplacental arterial endothelial cells (FpECAs), where succinate induced endothelial tube formation. VEGF gene expression was increased in response to succinate in both HUVECs and FpECAs. Yet, knockdown of SUCNR1 in HUVECs led to suppression of VEGF gene expression and abrogated the migratory ability and wound healing in response to succinate. In conclusion, our data underline SUCNR1 as a promising metabolic target in human placenta and as a potential driver of enhanced placental angiogenesis in GDM.


Assuntos
Neovascularização Fisiológica/genética , Placenta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Endotélio Vascular/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Placenta/irrigação sanguínea , Gravidez , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia
7.
J Allergy Clin Immunol ; 144(3): 764-776, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31082458

RESUMO

BACKGROUND: Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive. OBJECTIVE: The role of SCFAs was investigated in human eosinophil function and a mouse model of allergic asthma. METHODS: Eosinophils were purified from self-reported allergic or healthy donors. Migration, adhesion to the endothelium, and eosinophil survival were studied in vitro. Ca2+ flux, apoptosis, mitochondrial membrane potential, and expression of surface markers were determined by using flow cytometry and in part by using real-time PCR. Allergic airway inflammation was assessed in vivo in an ovalbumin-induced asthma model by using invasive spirometry. RESULTS: For the first time, we observed that SCFAs were able to attenuate human eosinophils at several functional levels, including (1) adhesion to the endothelium, (2) migration, and (3) survival. These effects were independent from GPR41 and GPR43 but were accompanied by histone acetylation and mimicked by trichostatin A, a pan-histone deacetylase inhibitor. In vivo butyrate ameliorated allergen-induced airway and lung eosinophilia, reduced type 2 cytokine levels in bronchial fluid, and improved airway hyperresponsiveness in mice. CONCLUSION: These in vitro and in vivo findings highlight the importance of SCFAs, especially butyrate as a promising therapeutic agent in allergic inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Butiratos/farmacologia , Butiratos/uso terapêutico , Eosinófilos/efeitos dos fármacos , Eosinofilia Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/genética , Asma/imunologia , Movimento Celular/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia
8.
Am J Physiol Renal Physiol ; 315(6): F1869-F1880, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332316

RESUMO

Prostaglandin E2 (PGE2) signaling is known to modulate inflammation and vascular resistance. Receptors of PGE2 [E-type prostanoid receptors (EP)] might be an attractive pharmacological target in immune-mediated diseases such as glomerulonephritis. We hypothesized that selective EP4 antagonism improves nephrotoxic serum nephritis (NTS) by its anti-inflammatory properties. Mice were subjected to NTS and treated with the EP4 antagonist ONO AE3-208 (10 mg·kg body wt-1·day-1] or vehicle starting from disease initiation. In one set of experiments, treatment was started 4 days after NTS induction. Tubular epithelial cells were evaluated in vitro under starving conditions. EP4 antagonist treatment significantly improved the NTS phenotype without affecting blood pressure levels. Remarkably, the improved NTS phenotype was also observed when treatment was started 4 days after NTS induction. EP4 antagonism decreased tubular chemokine (C-X-C motif) ligand ( Cxcl) 1 and Cxcl-5 expression and thereby subsequently reduced interstitial neutrophil infiltration into the kidney. In vitro, tubular epithelial cells increasingly expressed Cxcl-5 mRNA and Cxcl-5 protein when treated with PGE2 or an EP4 agonist under starving conditions, which was blunted by EP4 antagonist treatment. Together, EP4 antagonism improves the NTS phenotype, probably by decreasing mainly Cxcl-5 production in tubular cells, thereby reducing renal neutrophil infiltration.


Assuntos
Anti-Inflamatórios/farmacologia , Glomerulonefrite/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Naftalenos/farmacologia , Fenilbutiratos/farmacologia , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Animais , Linhagem Celular , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Glomerulonefrite/sangue , Glomerulonefrite/imunologia , Interleucina-6/genética , Interleucina-6/metabolismo , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Int J Cancer ; 142(1): 121-132, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875496

RESUMO

The putative cannabinoid receptor GPR55 has been shown to play a tumor-promoting role in various cancers, and is involved in many physiological and pathological processes of the gastrointestinal (GI) tract. While the cannabinoid receptor 1 (CB1 ) has been reported to suppress intestinal tumor growth, the role of GPR55 in the development of GI cancers is unclear. We, therefore, aimed at elucidating the role of GPR55 in colorectal cancer (CRC), the third most common cancer worldwide. Using azoxymethane (AOM)- and dextran sulfate sodium (DSS)-driven CRC mouse models, we found that GPR55 plays a tumor-promoting role that involves alterations of leukocyte populations, i.e. myeloid-derived suppressor cells and T lymphocytes, within the tumor tissues. Concomitantly, expression levels of COX-2 and STAT3 were reduced in tumor tissue of GPR55 knockout mice, indicating reduced presence of tumor-promoting factors. By employing the experimental CRC models to CB1 knockout and CB1 /GPR55 double knockout mice, we can further show that GPR55 plays an opposing role to CB1 . We report that GPR55 and CB1 mRNA expression are differentially regulated in the experimental models and in a cohort of 86 CRC patients. Epigenetic methylation of CNR1 and GPR55 was also differentially regulated in human CRC tissue compared to control samples. Collectively, our data suggest that GPR55 and CB1 play differential roles in colon carcinogenesis where the former seems to act as oncogene and the latter as tumor suppressor.


Assuntos
Carcinogênese/metabolismo , Neoplasias Colorretais/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo
11.
Front Immunol ; 15: 1408772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863703

RESUMO

Introduction: Macrophage dysfunction is a common feature of inflammatory disorders such as asthma, which is characterized by a strong circadian rhythm. Methods and results: We monitored the protein expression pattern of the molecular circadian clock in human peripheral blood monocytes from healthy, allergic, and asthmatic donors during a whole day. Monocytes cultured of these donors allowed us to examine circadian protein expression in human monocyte-derived macrophages, M1- and M2- polarized macrophages. In monocytes, particularly from allergic asthmatics, the oscillating expression of circadian proteins CLOCK, BMAL, REV ERBs, and RORs was significantly altered. Similar changes in BMAL1 were observed in polarized macrophages from allergic donors and in tissue-resident macrophages from activated precision cut lung slices. We confirmed clock modulating, anti-inflammatory, and lung-protective properties of the inverse ROR agonist SR1001 by reduced secretion of macrophage inflammatory protein and increase in phagocytosis. Using a house dust mite model, we verified the therapeutic effect of SR1001 in vivo. Discussion: Overall, our data suggest an interaction between the molecular circadian clock and monocytes/macrophages effector function in inflammatory lung diseases. The use of SR1001 leads to inflammatory resolution in vitro and in vivo and represents a promising clock-based therapeutic approach for chronic pulmonary diseases such as asthma.


Assuntos
Asma , Relógios Circadianos , Macrófagos , Monócitos , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Relógios Circadianos/imunologia , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Asma/imunologia , Asma/metabolismo , Masculino , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Inflamação/imunologia , Feminino , Camundongos , Adulto , Pyroglyphidae/imunologia , Células Cultivadas , Ritmo Circadiano/imunologia
12.
Pharmacol Ther ; 246: 108436, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150402

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibroblastos/metabolismo , Miofibroblastos , Redes e Vias Metabólicas , Fibrose
13.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001862

RESUMO

COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.

14.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36626225

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.


Assuntos
Autofagia , Fibrose Pulmonar Idiopática , Macrófagos , MicroRNAs , Animais , Humanos , Camundongos , Autofagia/genética , Bleomicina/efeitos adversos , Homeostase , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Mitocôndrias/metabolismo
15.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680051

RESUMO

People with diabetes have an increased risk of experiencing adverse COVID-19 outcomes. COVID-19 vaccination is, therefore, highly recommended. However, people with diabetes have an inherently elevated risk of thrombotic events and the impact of the vaccination on the coagulation system in this patient population remains to be elucidated. The aim of this study was to investigate the impact of COVID-19 vaccination on the haemostatic system in people with type 1 or type 2 diabetes. We evaluated the effects of COVID-19 vaccination (BioNTech Pfizer, Moderna, AstraZeneca) on standard coagulation parameters, whole blood coagulation (Thrombelastometry), platelet function (impedance aggregation), and thrombin generation (calibrated automated thrombography) in people with type 1 diabetes mellitus (n = 41) and type 2 diabetes mellitus (n = 37). Blood sampling points were prior to vaccination and two weeks after the respective vaccination. Thrombelastometry measurements indicated moderately increased clot formation post-vaccination in people with type 1, as well as with type 2, diabetes: "Clot formation times" were significantly shorter, and both "maximum clot firmness" and "alpha angles" were significantly higher, as compared to the respective pre-vaccination values. Therefore, TEM parameters were not altered after vaccination in patients receiving ASA. Moreover, platelet aggregation was enhanced in people with type 1 diabetes, and plasma levels of D-Dimer were increased in people with type 2 diabetes, following COVID-19 vaccination. All other standard coagulation parameters, as well as thrombin generation, were not affected by the vaccination. The coagulation responses of people with diabetes to COVID-19 vaccination were only subclinical and comparable to those observed in healthy individuals. Our findings suggest that people with diabetes do not face an increased activation of the coagulation post-vaccination.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hemostáticos , Humanos , Vacinas contra COVID-19/efeitos adversos , Trombina , COVID-19/prevenção & controle , Vacinação
16.
Nat Commun ; 13(1): 494, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078977

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.


Assuntos
Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Células A549 , Células Epiteliais Alveolares/classificação , Animais , Células Cultivadas , Análise por Conglomerados , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais/genética
17.
Front Physiol ; 12: 726253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594238

RESUMO

Hypoxia adversely affects the pulmonary circulation of mammals, including vasoconstriction leading to elevated pulmonary arterial pressures. The clinical importance of changes in the structure and function of the large, elastic pulmonary arteries is gaining increased attention, particularly regarding impact in multiple chronic cardiopulmonary conditions. We establish a multi-disciplinary workflow to understand better transcriptional, microstructural, and functional changes of the pulmonary artery in response to sustained hypoxia and how these changes inter-relate. We exposed adult male C57BL/6J mice to normoxic or hypoxic (FiO2 10%) conditions. Excised pulmonary arteries were profiled transcriptionally using single cell RNA sequencing, imaged with multiphoton microscopy to determine microstructural features under in vivo relevant multiaxial loading, and phenotyped biomechanically to quantify associated changes in material stiffness and vasoactive capacity. Pulmonary arteries of hypoxic mice exhibited an increased material stiffness that was likely due to collagen remodeling rather than excessive deposition (fibrosis), a change in smooth muscle cell phenotype reflected by decreased contractility and altered orientation aligning these cells in the same direction as the remodeled collagen fibers, endothelial proliferation likely representing endothelial-to-mesenchymal transitioning, and a network of cell-type specific transcriptomic changes that drove these changes. These many changes resulted in a system-level increase in pulmonary arterial pulse wave velocity, which may drive a positive feedback loop exacerbating all changes. These findings demonstrate the power of a multi-scale genetic-functional assay. They also highlight the need for systems-level analyses to determine which of the many changes are clinically significant and may be potential therapeutic targets.

18.
J Clin Med ; 10(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670614

RESUMO

Selectively targeting the E-type prostanoid receptor 4 (EP4) might be a new therapeutic option in the treatment of glomerulonephritis (GN), since the EP4 receptor is expressed on different immune cells, resident kidney cells, and endothelial cells, which are all involved in the pathogenesis of immune-complex GN. This study aimed to evaluate the therapeutic potential and to understand the mode of action of EP4 agonist in immune-complex GN using the murine model of nephrotoxic serum nephritis (NTS). In vivo, NTS mice were treated two times daily with two different doses of an EP4 agonist ONO AE1-329 or vehicle for 14 days total. The effect of PGE2 and EP4 agonism and antagonism was tested on murine distal convoluted tubular epithelial cells (DCT) in vitro. In vivo, the higher dose of the EP4 agonist led to an improved NTS phenotype, including a reduced tubular injury score and reduced neutrophil gelatinase-associated lipocalin (NGAL) and blood urea nitrogen (BUN) levels. EP4 agonist treatment caused decreased CD4+ T cell infiltration into the kidney and increased proliferative capacity of tubular cells. Injection of the EP4 agonist resulted in dose-dependent vasodilation and hypotensive episodes. The low-dose EP4 agonist treatment resulted in less pronounced episodes of hypotension. In vitro, EP4 agonism resulted in cAMP production and increased distal convoluted tubular (DCT) proliferation. Taken together, EP4 agonism improved the NTS phenotype by various mechanisms, including reduced blood pressure, decreased CD4+ T cell infiltration, and a direct effect on tubular cells leading to increased proliferation probably by increasing cAMP levels.

19.
Oncoimmunology ; 10(1): 1965319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527428

RESUMO

Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Linfócitos T CD8-Positivos , Camundongos , Monoacilglicerol Lipases/genética , Monoglicerídeos , Microambiente Tumoral
20.
Thromb Haemost ; 120(11): 1548-1556, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32772348

RESUMO

BACKGROUND: For patients treated with dual antiplatelet therapy, standardized drug-specific 3-to-7 day cessation is recommended prior to major surgery to reach sufficient platelet function recovery. Here we investigated the hypothesis that supplemental fibrinogen might mitigate the inhibitory effects of antiplatelet therapy. METHODS AND RESULTS: To this end blood from healthy donors was treated in vitro with platelet inhibitors, and in vitro thrombus formation and platelet activation were assessed. Ticagrelor, acetylsalicylic acid, the combination of both, and tirofiban all markedly attenuated the formation of adherent thrombi, when whole blood was perfused through collagen-coated microchannels at physiological shear rates. Addition of fibrinogen restored in vitro thrombus formation in the presence of antiplatelet drugs and heparin. However, platelet activation, as investigated in assays of P-selectin expression and calcium flux, was not altered by fibrinogen supplementation. Most importantly, fibrinogen was able to restore in vitro thrombogenesis in patients on maintenance dual antiplatelet therapy after percutaneous coronary intervention. CONCLUSION: Thus, our in vitro data support the notion that supplementation of fibrinogen influences the perioperative hemostasis in patients undergoing surgery during antiplatelet therapy by promoting thrombogenesis without significantly interfering with platelet activation.


Assuntos
Fibrinogênio/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Trombose/prevenção & controle , Idoso , Aspirina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Hemorreologia , Heparina/farmacologia , Hirudinas/farmacologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Selectina-P/biossíntese , Selectina-P/genética , Ticagrelor/farmacologia , Tirofibana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA