RESUMO
BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual []). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.
Assuntos
Malária , Superinfecção , Humanos , Senegal/epidemiologia , Incidência , Plasmodium falciparum/genéticaRESUMO
BACKGROUND/METHODS: Insecticide-treated nets (ITNs) are the primary tool for malaria vector control in sub-Saharan Africa, and have been responsible for an estimated two-thirds of the reduction in the global burden of malaria in recent years. While the ultimate goal is high levels of ITN use to confer protection against infected mosquitoes, it is widely accepted that ITN use must be understood in the context of ITN availability. However, despite nearly a decade of universal coverage campaigns, no country has achieved a measured level of 80% of households owning 1 ITN for 2 people in a national survey. Eighty-six public datasets from 33 countries in sub-Saharan Africa (2005-2017) were used to explore the causes of failure to achieve universal coverage at the household level, understand the relationships between the various ITN indicators, and further define their respective programmatic utility. RESULTS: The proportion of households owning 1 ITN for 2 people did not exceed 60% at the national level in any survey, except in Uganda's 2014 Malaria Indicator Survey (MIS). At 80% population ITN access, the expected proportion of households with 1 ITN for 2 people is only 60% (p = 0.003 R2 = 0.92), because individuals in households with some but not enough ITNs are captured as having access, but the household does not qualify as having 1 ITN for 2 people. Among households with 7-9 people, mean population ITN access was 41.0% (95% CI 36.5-45.6), whereas only 6.2% (95% CI 4.0-8.3) of these same households owned at least 1 ITN for 2 people. On average, 60% of the individual protection measured by the population access indicator is obscured when focus is put on the household "universal coverage" indicator. The practice of limiting households to a maximum number of ITNs in mass campaigns severely restricts the ability of large households to obtain enough ITNs for their entire family. CONCLUSIONS: The two household-level indicators-one representing minimal coverage, the other only 'universal' coverage-provide an incomplete and potentially misleading picture of personal protection and the success of an ITN distribution programme. Under current ITN distribution strategies, the global malaria community cannot expect countries to reach 80% of households owning 1 ITN for 2 people at a national level. When programmes assess the success of ITN distribution activities, population access to ITNs should be considered as the better indicator of "universal coverage," because it is based on people as the unit of analysis.
Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , África Subsaariana , Animais , Controle de Doenças Transmissíveis/métodos , Características da Família , Humanos , Controle de Mosquitos/métodos , PropriedadeRESUMO
BACKGROUND: Malaria rapid diagnostic tests (RDTs) enable point-of-care testing to be nearly as sensitive and specific as reference microscopy. The Senegal National Malaria Control Programme introduced RDTs in 2007, along with a case management algorithm for uncomplicated febrile illness, in which the first step stipulates that if a febrile patient of any age has symptoms indicative of febrile illness other than malaria (e.g., cough or rash), they would not be tested for malaria, but treated for the apparent illness and receive an RDT for malaria only if they returned in 48 h without improvement. METHODS: A year-long study in 16 health posts was conducted to determine the algorithm's capacity to identify patients with Plasmodium falciparum infection identifiable by RDT. Health post personnel enrolled patients of all ages with fever (≥37.5 °C) or history of fever in the previous 2 days. After clinical assessment, a nurse staffing the health post determined whether a patient should receive an RDT according to the diagnostic algorithm, but performed an RDT for all enrolled patients. RESULTS: Over 1 year, 6039 patients were enrolled and 58% (3483) were determined to require an RDT according to the algorithm. Overall, 23% (1373/6039) had a positive RDT, 34% (1130/3376) during rainy season and 9% (243/2661) during dry season. The first step of the algorithm identified only 78% of patients with a positive RDT, varying by transmission season (rainy 80%, dry 70%), malaria transmission zone (high 75%, low 95%), and age group (under 5 years 68%, 5 years and older 84%). CONCLUSIONS: In all but the lowest malaria transmission zone, use of the algorithm excludes an unacceptably large proportion of patients with malaria from receiving an RDT at their first visit, denying them timely diagnosis and treatment. While the algorithm was adopted within a context of malaria control and scarce resources, with the goal of treating patients with symptomatic malaria, Senegal has now adopted a policy of universal diagnosis of patients with fever or history of fever. In addition, in the current context of malaria elimination, the paradigm of case management needs to shift towards the identification and treatment of all patients with malaria infection.
Assuntos
Algoritmos , Administração de Caso , Testes Diagnósticos de Rotina/estatística & dados numéricos , Febre , Malária Falciparum/diagnóstico , Testes Imediatos/estatística & dados numéricos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Valores de Referência , Senegal , Sensibilidade e Especificidade , Adulto JovemRESUMO
Background: In Africa, the scale-up of malaria control interventions, including seasonal malaria chemoprevention (SMC), has dramatically reduced malaria burden, but progress toward malaria elimination has stalled. We evaluated mass drug administration (MDA) as a strategy to accelerate reductions in malaria incidence in Senegal. Methods: We conducted an open-label, cluster-randomised controlled trial in a low-to-moderate transmission setting of Tambacounda, Senegal. Eligible villages had a population size between 200-800. All villages received pyrethroid-piperonyl butoxide bednets and proactive community case management of malaria at baseline. Sixty villages were randomised 1:1 to either three cycles of MDA with dihydroartemisinin-piperaquine+single-low dose primaquine administered to individuals aged ≥3 months, six-weeks apart starting the third week of June (intervention), or standard-of-care, which included three monthly cycles of SMC with sulfadoxine-pyrimethamine+amodiaquine administered to children aged 3-120 months starting end of July (control). MDA and SMC were delivered door-to-door. The primary outcome was clinical malaria incidence in all ages assessed during the peak transmission season (July-December), the year after intervention. Here, we report safety, coverage, and impact outcomes during the intervention year. The trial is registered at ClinicalTrials.Gov (NCT04864444). Findings: Between June 21, 2021 and October 3, 2021, 6505, 7125, and 7250 participants were administered MDA and 3202, 3174, and 3146 participants were administered SMC across cycles. Coverage of ≥1 dose of MDA drugs was 79%, 82%, and 83% across cycles. During the transmission season of the intervention year, MDA was associated with a 55% [95% CI: 28%-72%] lower incidence of malaria compared to control (MDA: 93 cases/1000 population; control: 173 cases/1000 population). No serious adverse events were reported in either arm. Interpretation: In low-to-moderate malaria transmission settings with scaled-up malaria control interventions, MDA with dihydroartemisinin-piperaquine+single-low dose primaquine is effective and well-tolerated for reducing malaria incidence. Further analyses will focus on the sustainability of this reduction. Funding: United States President's Malaria Initiative.
RESUMO
Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programs (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. Here, we examined parasites from 3,147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, we constructed a series of Poisson generalized linear mixed-effects models to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. We compared the model-predicted incidence with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (<10/1000/annual []). When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence >10 ), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was <10 , we found that many of the correlations between parasite genetics and incidence were reversed, which we hypothesize reflects the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.
RESUMO
In the context of emerging biorefinery for microalgae, polyethyleneimine (PEI), has been tested in order to achieve separation of fat-soluble and water-soluble compounds from Haematococcus pluvialis. Several parameters were taken into account (ratio between sample and PEI, pH, and ionic strength) and 2 conditions (0.075% PEI pH 7.4, and 0.100% PEI pH8.5) were studied for up-scalability, with a recovery of flocculated compounds (lipids and pigments), and a complete characterization of both phases. Using 0.075% PEI, pH7.4, 100% sugars and 89.8% proteins were retained in the supernatant, but some trace of beta-carotene were also detected. For 0.100% PEI, pH 8.5, a loss in proteins content was highlighted (61.2% proteins retained), but no residual lipids or pigments were detected. PEI could therefore be considered as an efficient method to fractionate fat-soluble and water-soluble compounds from microalgae.
Assuntos
Microalgas , Fracionamento Químico , Clorofíceas , Floculação , PolietilenoiminaRESUMO
BACKGROUND: Human populations exposed to low malaria transmission present particular severe risks of malaria morbidity and mortality. In addition, in a context of low-level exposure to Anopheles vector, conventional entomological methods used for sampling Anopheles populations are insufficiently sensitive and probably under-estimate the real risk of malaria transmission. The evaluation of antibody (Ab) responses to arthropod salivary proteins constitutes a novel tool for estimating exposure level to insect bites. In the case of malaria, a recent study has shown that human IgG responses to the gSG6-P1 peptide represented a specific biomarker of exposure to Anopheles gambiae bites. The objective of this study was to investigate if this biomarker can be used to estimate low-level exposure of individuals to Anopheles vector. METHODS: The IgG Ab level to gSG6-P1 was evaluated at the peak and at the end of the An. gambiae exposure season in children living in Senegalese villages, where the Anopheles density was estimated to be very low by classical entomological trapping but where malaria transmission occurred during the studied season. RESULTS: Specific IgG responses to gSG6-P1 were observed in children exposed to very low-level of Anopheles bites. In addition, a significant increase in the specific IgG Ab level was observed during the Anopheles exposure season whereas classical entomological data have reported very few or no Anopheles during the studied period. Furthermore, this biomarker may also be applicable to evaluate the heterogeneity of individual exposure. CONCLUSION: The results strengthen the hypothesis that the evaluation of IgG responses to gSG6-P1 during the season of exposure could reflect the real human contact with anthropophilic Anopheles and suggest that this biomarker of low exposure could be used at the individual level. This promising immuno-epidemiological marker could represent a useful tool to assess the risk to very low exposure to malaria vectors as observed in seasonal, urban, altitude or travellers contexts. In addition, this biomarker could be used for the surveillance survey after applying anti-vector strategy.
Assuntos
Anopheles/imunologia , Imunoglobulina G/sangue , Mordeduras e Picadas de Insetos/diagnóstico , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Biomarcadores/sangue , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , SenegalRESUMO
BACKGROUND: The burden of Plasmodium falciparum malaria has worsened because of the emergence of chloroquine resistance. Antimalarial drug use and drug pressure are critical factors contributing to the selection and spread of resistance. The present study explores the geographical, socio-economic and behavioural factors associated with the use of antimalarial drugs in Africa. METHODS: The presence of chloroquine (CQ), pyrimethamine (PYR) and other antimalarial drugs has been evaluated by immuno-capture and high-performance liquid chromatography in the urine samples of 3,052 children (2-9 y), randomly drawn in 2003 from the general populations at 30 sites in Senegal (10), Burkina-Faso (10) and Cameroon (10). Questionnaires have been administered to the parents of sampled children and to a random sample of households in each site. The presence of CQ in urine was analysed as dependent variable according to individual and site characteristics using a random - effect logistic regression model to take into account the interdependency of observations made within the same site. RESULTS: According to the sites, the prevalence rates of CQ and PYR ranged from 9% to 91% and from 0% to 21%, respectively. In multivariate analysis, the presence of CQ in urine was significantly associated with a history of fever during the three days preceding urine sampling (OR = 1.22, p = 0.043), socio-economic level of the population of the sites (OR = 2.74, p = 0.029), age (2-5 y = reference level; 6-9 y OR = 0.76, p = 0.002), prevalence of anti-circumsporozoite protein (CSP) antibodies (low prevalence: reference level; intermediate level OR = 2.47, p = 0.023), proportion of inhabitants who lived in another site one year before (OR = 2.53, p = 0.003), and duration to reach the nearest tarmacked road (duration less than one hour = reference level, duration equal to or more than one hour OR = 0.49, p = 0.019). CONCLUSION: Antimalarial drug pressure varied considerably from one site to another. It was significantly higher in areas with intermediate malaria transmission level and in the most accessible sites. Thus, P. falciparum strains arriving in cross-road sites or in areas with intermediate malaria transmission are exposed to higher drug pressure, which could favour the selection and the spread of drug resistance.
Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Pirimetamina/uso terapêutico , Fatores Etários , Animais , Anticorpos Antiprotozoários/sangue , Burkina Faso , Camarões , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Resistência a Medicamentos , Feminino , Febre de Causa Desconhecida/tratamento farmacológico , Geografia , Humanos , Masculino , Seleção Genética , Senegal , Fatores Socioeconômicos , Inquéritos e Questionários , Urina/químicaRESUMO
The evaluation of human immune responses to arthropod bites may be a useful marker of exposure to vector-borne diseases, with applications to malaria, the most serious parasitic infection in humans. The specific antibody (Ab) IgG response to saliva obtained from Anopheles gambiae mosquitoes was evaluated in young children from an area of seasonal malaria transmission in Senegal. Specific IgG was higher in children who developed clinical Plasmodium falciparum malaria within the 3 months that followed than in those who did not (P<0.05), and it increased significantly (P<0.0001) with the level of Anopheles exposure, as evaluated by conventional entomological methods. These results suggest that evaluation of antisalivary Ab responses could be a useful approach for identifying a marker for the risk of malaria transmission.
Assuntos
Anopheles/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/sangue , Insetos Vetores/parasitologia , Malária Falciparum/imunologia , Animais , Biomarcadores , Criança , Pré-Escolar , Humanos , Lactente , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fatores de Risco , Saliva/imunologia , Estações do Ano , SenegalRESUMO
A water-soluble matrix was extracted from green vegetative Haematococcus pluvialis through high-pressure cell disruption either at native pH (5.7) or with pH shifting to neutral (7). The resulting supernatant is mainly composed of carbohydrates and proteins, with the highest yield of proteins obtained at neutral pH (73±2% of total biomass proteins). The key emulsification properties of the proteins isolated in neutral supernatant (emulsification capacity (EC): 534±41mLoilg(-1) protein, emulsification stability (ES): 94±3% and emulsification activity index (EAI): 80±1m(2)g(-1)) were comparable to the native supernatant values (EC: 589±21mLoilg(-1) protein, ES: 84±3% and EAI: 75±1m(2)g(-1)). Confronted to sodium caseinate (EC: 664±30mLoilg(-1) protein, ES: 63±4%, and EAI: 56±4m(2)g(-1)) these results highlighted the strong potential of proteins isolated from H. pluvialis as emulsifier agent. Moreover, experiments have shown that the stability of emulsions obtained from supernatants is due to the proteins rather than the carbohydrates.
Assuntos
Clorófitas/química , Emulsificantes/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Biomassa , Carboidratos/análise , Carboidratos/química , Fracionamento Químico , Emulsificantes/química , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Solubilidade , Água/químicaRESUMO
BACKGROUND: Sub-Saharan Africa (SSA) including Senegal is faced with a significant and increasing burden of type 2 diabetes. However, little information is available about diabetes management among Senegalese diabetics. PURPOSE: The current study aims to describe the level of glycemic control among a convenience sample of diabetics who receive care at the M'Bour Hospital in M'Bour, Senegal. METHODS: A total of 106 type 2 diabetic patients were recruited at the hospital complex of M'Bour, Senegal. Linear regression was employed to assess the relationship between clinical and sociodemographic factors and Hba1c. RESULTS: Only 24.8% of the sample had glycemic control, according to an Hba1c test. Participants who were diagnosed earlier were less likely to have diabetes control (mean = 7.8 years) compared with those who were diagnosed more recently (mean = 6.5 years); p< .05. CONCLUSIONS: We found that glycemic control in our sample was suboptimal. Length of time with diabetes was one of the key factors related to glycemic control. Length of time with diabetes is negatively associated with glycemic control. Early diagnosis and early glycemic control are essential to long-term glycemic control screening, and early detection for diabetes is uncommon given the general lack of health insurance and most people paying out of pocket for medical care. In the absence of universal health insurance, public health programs that provide blood sugar screenings for high-risk individuals would provide preliminary indication of abnormal glucose; however, subsequent diagnostic testing and follow-up may still be cost prohibitive.
Assuntos
Diabetes Mellitus Tipo 2/sangue , Gerenciamento Clínico , Hemoglobinas Glicadas/análise , Autocuidado , Diabetes Mellitus Tipo 2/terapia , Feminino , Abastecimento de Alimentos/economia , Humanos , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Cooperação do Paciente , Senegal , Fatores de TempoRESUMO
Two families of five metallodendrimers have been assembled by hydrogen bonding between the primary amino groups of DSM dendrimers G(n)-DAB-dendr-(NH(2))x (n = 1-5; x = 4, 8, 16, 32, 64) and the OH group of phenol dendrons containing a triallyl or a triferrocenylalkyl tripod in para position. These H-bonded dendrimers noted G(1)-DAB-12Fc, G(2)-DAB-24Fc, G(3)-DAB-48Fc, G(4)-DAB-96Fc, and G(5)-DAB-192Fc have been characterized as resulting from fast, reversible hydrogen bonding by the single broad signal observed in (1)H NMR for the three NH(2) + OH protons whose location depends on the concentration. The cyclic voltammograms (CVs) show a single reversible ferrocenyl wave due to the equivalence of these groups and the fast rotation of the supramolecular ensemble compared to the CV time scale. A new CV wave appears at less anodic potential upon addition of H(2)PO(4)(-) or adenosine-triphosphate (ATP(2)(-)) anion as a tetrabutylammonium salt as with previously studied ferrocenyl dendrimers. In addition, other specific and remarkable features are the fact that the new CV wave is much less intense than the initial one and the dramatically sudden disappearance of the initial CV wave at the equivalent point indicating the formation of a large supramolecular assembly with the hydrogenophosphate groups. Finally, the variation of the number of equivalent anions with the generation number to reach the equivalent point also suggests that the competition between the amino- and amido group for the interaction with hydrogenophosphate depends on the generation number. Recognition by these supramolecular dendrimers of H(2)PO(4)(-) and ATP(2)(-) follows the model of the relatively strong-interaction type in the Kaifer-Echegoyen model, which allows access to the ratio of association constants K(+)/K(0). A positive dendritic effect is found for the recognition of H(2)PO(4)(-) (i.e., the difference of potentials DeltaE(1/2) between the initial CV wave and the new one and the K(+)/K(0) value increase as the generation number increases) whereas the dendritic effect is slightly negative for the recognition of ATP(2)(-).