Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364009

RESUMO

Bromine atom (Br) reactions lead to ozone depletion in the troposphere and stratosphere. Photodegradation of bromocarbons is one of the main sources of bromine atoms in the atmosphere. Here, we use high-level ab initio methods, including spin-orbit effects, to study the photodissociation of the CH2Br radical. All possible fragmentation pathways, namely CH2Br + hν → CH2 + Br, HCBr + H, and CBr + H2, have been analyzed. Potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated. Considering the actinic fluxes of solar irradiation in the troposphere and in the stratosphere in the relevant range of frequencies, it is found that the first five excited states of CH2Br can be accessed from the ground state. Analysis of the potential curves shows that the pathways producing CH2 + Br and HCBr + H can proceed through a fast direct dissociation mechanism, while the pathway leading to CBr + H2 involves much slower dissociation mechanisms like internal conversion between electronic states, predissociation, or tunneling through exit barriers. The main implications are that the two faster channels are predicted to be dominant, and the slower pathway is expected to be less relevant. The tropospheric and stratospheric solar actinic fluxes also allow for further dissociation of the HCBr and CBr fragments, generating additional Br atoms, provided that they survive possible collisions with other atmospheric reagents. Finally, we discuss the possible effect of each of the three CH2Br dissociation pathways on the depletion of atmospheric ozone.

2.
Phys Chem Chem Phys ; 25(30): 20365-20372, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465906

RESUMO

Photodissociation of the CH2I radical and the CH2I+ cation is studied by means of high-level ab initio calculations, including spin-orbit effects. Potential-energy curves (PEC) along the dissociating bond distances involved in some fragmentation pathways of these species are computed for the ground and several excited electronic states. Based on the PECs obtained, the possible photodissociation mechanisms are analyzed and suggested. Significant differences are found between the fragmentation dynamics of the neutral radical and that of the cation. While a relatively simple dissociation dynamics is predicted for CH2I, more complex fragmentation mechanisms involving internal conversion and couplings between different excited electronic states are expected for CH2I+. The species studied here are relevant to atmospheric chemistry, and the present work can help to understand better how their photodissociation may affect chemical processes in the atmosphere.

3.
Phys Chem Chem Phys ; 24(12): 7387-7395, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266503

RESUMO

Photodissociation of the vinyl radical through pathways CH2CH → CH2C + H, CH2CH → CHCH + H, and CH2CH → CH2 + CH is investigated by means of high-level ab initio calculations. Potential-energy curves (PECs) along the corresponding dissociating bond distance associated with the ground and several excited electronic states involved in the above fragmentation pathways, as well as the nonadiabatic couplings connecting the different states, are obtained. The findings of several experiments on vinyl photodissociation performed at different excitation wavelengths are analyzed and explained qualitatively in the light of the present PECs. A two-dimensional representation (consisting of radial and angular coordinates to represent one of the H atoms of the CH2 group) is also used to calculate the electronic states. The surfaces obtained reflect a rich variety of conical intersections, exit barriers, and nonadiabatic couplings leading to predissociation in different regions of energy and of the two coordinates, suggesting a complex photodissociation dynamics of the CH2CH → CHCH + H pathway, with rather different fragmentation mechanisms involved. The two-dimensional results also provide interesting information on the mechanism of in-plane hydrogen migration from the CH2 group to the CH one through a high-lying transition state.

4.
Phys Chem Chem Phys ; 21(15): 7885-7893, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916089

RESUMO

A coherent control scheme is suggested to modify the output of photodissociation in a polyatomic system. The performance of the scheme is illustrated by applying it to the ultrafast photodissociation of CH3I in the A-band. The control scheme uses a pump laser weak field that combines two pulses of a few femtoseconds delayed in time. By varying the time delay between the pulses, the shape of the laser field spectral profile is modulated, which causes a change in the initial relative populations excited by the pump laser to the different electronic states involved in the photodissociation. Such a change in the relative populations produces different photodissociation outputs, which is the basis of the control achieved. The degree of control obtained over different photodissociation observables, like the branching ratio between the two dissociation channels of CH3I yielding I(2P3/2) and I*(2P1/2) and the fragment angular distributions associated with each channel, is investigated. These magnitudes are found to oscillate strongly with the time delay, with the branching ratio changing by factors between two and three. Substantial variations of the angular distributions also indicate that the scheme provides a high degree of control. Experimental application of the scheme to general polyatomic photodissociation processes should be straightforward.

5.
Phys Chem Chem Phys ; 20(25): 16956-16965, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29897078

RESUMO

Femtosecond laser ablation of solids is known to produce ejection of material to a large extent composed of particles of nanometer dimensions for a broad variety of targets. This work explores the ultrashort laser ablation of metal targets (Ag, Cu, Al, Mn) through non-conventional diagnostics based on the nonlinear response of the transient medium created upon ablation. The full temporal mapping of the nonlinear response constitutes a useful flag that signals the abundance of clusters and nanoparticles in the plume. The use of this method for diagnosis has allowed us to perform direct observation of middle-sized aggregates that are extremely elusive with other techniques. Additionally, one crucial and seldom explored parameter in this context has been identified: the ablation laser spot size. Optimum conditions for overall nanoparticle generation as well as relative nanoparticle/cluster/atom ratios have been found.

6.
Phys Chem Chem Phys ; 19(30): 19533-19535, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28744548

RESUMO

The deposition of large amounts of energy in a molecule by XUV/X-ray photon absorption or fast-ion collision, triggers a set of complex ultrafast electronic and nuclear dynamics that allow a deep understanding and control of chemical reactivity. This themed issue showcases the research performed in the understanding, monitoring and control of these processes.

7.
Phys Chem Chem Phys ; 19(11): 7886-7896, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28262906

RESUMO

The photodissociation dynamics of the methyl iodide cation has been studied using the velocity map imaging technique. A first laser pulse is used to ionize methyl iodide via a (2 + 1) REMPI scheme through the 5pπ → 6p Rydberg state two-photon transition. The produced CH3I+(X[combining tilde]2E3/2) ions are subsequently excited at several wavelengths between 242 and 260 nm. The reported translational energy distributions for the methyl and iodine ions present a Boltzmann-type unstructured distribution at low excitation energies as well as a recoiled narrow structure at higher excitation energies highlighting two different dissociation processes. High level ab initio calculations have been performed in order to obtain a deeper understanding of the photodissociation dynamics of the CH3I+ ion. Direct dissociation on a repulsive state from the manifold of states representing the B[combining tilde] excited state leads to CH3+(X[combining tilde]1A1') + I*(2P1/2), while the CH3 + I+(3P2) channel is populated through an avoided crossing outside the Franck-Condon region. In contrast, an indirect process involving the transfer of energy from highly excited electronic states to the ground state of the ion is responsible for the observed Boltzmann-type distributions.

8.
Phys Chem Chem Phys ; 19(46): 31245-31254, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29143005

RESUMO

The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X (X = O, S), taking place after the Ã(2A1) ← X[combining tilde](2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role in the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in light of the results obtained.

9.
J Chem Phys ; 147(1): 013945, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688417

RESUMO

The photodissociation dynamics of bromochloromethane (CH2BrCl) have been investigated at the maximum of the first absorption band, at the excitation wavelengths 203 and 210 nm, using the slice imaging technique in combination with a probe detection of bromine-atom fragments, Br(2P3/2) and Br*(2P1/2), via (2 + 1) resonance enhanced multiphoton ionization. Translational energy distributions and angular distributions reported for both Br(2P3/2) and Br*(2P1/2) fragments show two contributions for the Br(2P3/2) channel and a single contribution for the Br*(2P1/2) channel. High level ab initio calculations have been performed in order to elucidate the dissociation mechanisms taking place. The computed absorption spectrum and potential energy curves indicate the main contribution of the populated 4A″, 5A', and 6A' excited states leading to a C-Br cleavage. Consistently with the results, the single contribution for the Br*(2P1/2) channel has been attributed to direct dissociation through the 6A' state as well as an indirect dissociation of the 5A' state requiring a 5A' → 4A' reverse non-adiabatic crossing. Similarly, a faster contribution for the Br(2P3/2) channel characterized by a similar energy partitioning and anisotropy than those for the Br*(2P1/2) channel is assigned to a direct dissociation through the 5A' state, while the slower component appears to be due to the direct dissociation on the 4A″ state.

10.
Phys Chem Chem Phys ; 18(48): 33195-33203, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27892569

RESUMO

The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states.

11.
J Phys Chem A ; 119(50): 11951-62, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25822338

RESUMO

Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martínez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.

12.
Phys Chem Chem Phys ; 16(8): 3757-62, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24430097

RESUMO

The photodynamics of phenol-ammonia clusters, PhOH(NH3)(3-5), after one UV photon absorption, has been investigated using velocity map imaging of the NH4(NH3)(2-4) cluster products. The dependence of the NH4(NH3)2 translational energy distributions on the available energy reveals three dynamical regions in close correspondence with the photodissociation of bare phenol. At low excitation energies (between 282 and 260 nm), the NH4(NH3)2 distribution mirrors the hydrogen-atom passage through the 1(1)ππ*-1(1)πσ* barrier, constituting the first evidence of hydrogen-atom tunneling dynamics in an excited state hydrogen transfer (ESHT) reaction. At excitation wavelengths below 260 nm, the product distributions are consistent with two separate barrierless dissociation processes associated, respectively, with excitation to the 1(1)ππ* and 2(1)ππ* excited electronic states. Similar conclusions can be derived from the velocity map imaging results on the larger NH4(NH3)(3,4) cluster products.

13.
J Phys Chem A ; 117(34): 8175-83, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23713854

RESUMO

The photodissociation of nitromethane at 193 nm is reviewed in terms of new stereodynamical information provided by the measurement of the first four Dixon's bipolar moments, ß0(2)(20), ß0(0)(22), ß0(2)(02), and ß0(2)(22), using slice imaging. The measured speed-dependent ß0(2)(20) (directly related with the spatial anisotropy parameter ß) indicates that after one-photon absorption to the S3(2 (1)A″) state by an allowed perpendicular transition, two reaction pathways can compete with similar probability, a direct dissociation process yielding ground-state CH3 and NO2(1 (2)A2) radicals and a indirect dissociation through conical intersections in which NO2 radicals are formed in lower-lying electronic states. A particularly important result from our measurements is that the low recoil energy part of the methyl fragment translational energy distribution presents a contribution with parallel character, irrespective of the experimental conditions employed, that we attribute to parent cluster dissociation. Moreover, the positive values found for the ß0(0)(22) bipolar moment indicates some propensity for the fragment's recoil velocity and angular momentum vectors to be parallel.

14.
Phys Chem Chem Phys ; 14(17): 6067-78, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22450696

RESUMO

The roaming dynamics in the photodissociation of acetaldehyde is studied through the first absorption band, in the wavelength interval ranging from 230 nm to 325 nm. Using a combination of the velocity-map imaging technique and rotational resonance enhanced multiphoton ionization (REMPI) spectroscopy of the CO fragment, the branching ratio between the canonical transition state and roaming dissociation mechanisms is obtained at each of the photolysis wavelengths studied. Upon one photon absorption, the molecule is excited to the first singlet excited S(1) state, which, depending on the excitation wavelength, either converts back to highly vibrationally excited ground S(0) state or undergoes intersystem crossing to the first excited triplet T(1) state, from where the molecule can dissociate over two main channels: the radical (CH(3) + HCO) and the molecular (CO + CH(4)) channels. Three dynamical regions are characterized: in the red edge of the absorption band, at excitation energies below the T(1) barrier, the ratio of the roaming dissociation channel increases, largely surpassing the transition state contribution. As the excitation wavelength is increased, the roaming propensity decreases reaching a minimum at wavelengths ∼308 nm. Towards the blue edge, at 230 nm, an upper limit of ∼50% has been estimated for the contribution of the roaming channel. The experimental results are interpreted in terms of the interaction between the different potential energy surfaces involved by means of ab initio stationary points and intrinsic reaction coordinate paths calculations.

15.
J Phys Chem A ; 116(1): 132-8, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22129246

RESUMO

The dynamics and kinetics of the Li + H2⁺ reaction and its isotopic variants (D2⁺ and T2⁺) have been studied by using a time-dependent wave packet (TDWP) coupled-channel (CC) method on the ab initio potential energy surface (PES) of Martinazzo et al. [J. Chem. Phys. 2003, 119, 21]. Total initial v = 0, j = 0 state-selected reaction probabilities for the Li + H2⁺ reaction and its isotopic variants have been calculated from the threshold up to 1 eV for total angular momenta J from 0 to 90. Integral cross sections have been evaluated from the reaction probabilities at collision energies from threshold (≈0.2 eV) up to 1.0 eV collision. The calculated rate constants as a function of temperature show an Arrhenius type behavior in the 200 ≤ T ≤ 1000 K temperature interval. It has been found to be a considerable large intermolecular kinetic isotope effect. The TDWP-CC results are in overall good agreement with those obtained applying the TDWP Centrifugal-Sudden (CS) approximation, showing that the CS approximation is rather accurate for the title reaction.

16.
J Chem Phys ; 137(11): 114309, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998264

RESUMO

We present wave packet calculations of total and state-to-state reaction probabilities and integral cross sections for the nonadiabatic dynamics of the O((3)P)+HF → F((2)P)+OH((2)Π) reaction at hyperthermal collision energies ranging from 1.2 to 2.4 eV. The validity of the centrifugal sudden approximation is discussed for the title reaction and a comprehensive investigation of the influence of nonadiabatic effects on the dynamics of this reactive system at high (hyperthermal) collision energies is presented. In general, nonadiabatic effects are negligible for averaged observables, such as total reaction probabilities and integral cross sections, but they are clearly observed in detailed observables such as rotationally state-resolved reaction probabilities. A critical discussion of nonadiabatic effects on the dynamics of the title reaction is carried out by comparing with the reverse reaction and the characteristics of the adiabatic and diabatic potential energy surfaces involved.

17.
J Chem Phys ; 137(9): 094305, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22957567

RESUMO

The excited state hydrogen transfer (ESHT) reaction in pyrrole-ammonia clusters (PyH·(NH(3))(n), n = 2-5) at excitation wavelengths below 218 nm down to 199 nm, has been studied using a combination of velocity map imaging and non-resonant detection of the NH(4)(NH(3))(n-1) products. Special care has been taken to avoid evaporation of solvent molecules from the excited clusters by controlling the intensity of both the excitation and probing lasers. The high resolution translational energy distributions obtained are analyzed on the base of an impulsive mechanism for the hydrogen transfer, which mimics the direct N-H bond dissociation of the bare pyrrole. In spite of the low dissociation wavelengths attained (~200 nm) no evidence of hydrogen-loss statistical dynamics has been observed. The effects of clustering of pyrrole with ammonia molecules on the possible statistical decomposition channels of the bare pyrrole are discussed.

18.
J Chem Phys ; 136(7): 074303, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22360239

RESUMO

Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH(3)I, including vibrational excitation in the ν(2) and ν(3) modes of the bound (3)R(1)(E) Rydberg state. Specific predissociation lifetimes have been determined for the 2(0)(1) and 3(0)(1) vibronic levels from measurements of time-resolved I*((2)P(1/2)) and CH(3) fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 0(0) (0) [Gitzinger et al., J. Chem. Phys. 132, 234313 (2010)]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode (ν(3)) of the CH(3)I (3)R(1)(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode (ν(2)), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 ± 0.04 ps and 4.34 ± 0.13 ps for the 2(0)(1) and 3(0)(1) vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH(3) fragment are presented. Additional striking results found in the present work are the evidence of ground state I((2)P(3/2)) fragment production when excitation is produced specifically to the 3(0)(1) vibronic level, which is attributed to predissociation via the A-band (1)Q(1) potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band (3)A(1)(4E) state, after direct absorption to this state, competing with absorption to the 3(0)(1) vibronic level of the (3)R(1)(E) Rydberg state of the B-band.

19.
Opt Express ; 19(2): 1516-27, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21263693

RESUMO

The majority of the applications of ultrashort laser pulses require a control of its spectral bandwidth. In this paper we show the capability of volume phase holographic gratings recorded in photopolymerizable glasses for spectral pulse reshaping of ultrashort laser pulses originated in an Amplified Ti: Sapphire laser system and its second harmonic. Gratings with high laser induce damage threshold (LIDT) allowing wide spectral bandwidth operability satisfy these demands. We have performed LIDT testing in the photopolymerizable glass showing that the sample remains unaltered after more than 10 million pulses with 0,75 TW/cm2 at 1 KHz repetition rate. Furthermore, it has been developed a theoretical model, as an extension of the Kogelnik's theory, providing key gratings design for bandwidth operability. The main features of the diffracted beams are in agreement with the model, showing that non-linear effects are negligible in this material up to the fluence threshold for laser induced damage. The high versatility of the grating design along with the excellent LIDT indicates that this material is a promising candidate for ultrashort laser pulses manipulations.


Assuntos
Vidro/química , Holografia/instrumentação , Lasers , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Vidro/efeitos da radiação , Luz
20.
Phys Chem Chem Phys ; 13(6): 2228-36, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21109873

RESUMO

The effect of changing the temporal width of the pump and probe pulses in the time-resolved photodissociation of CH(3)I in the A-band has been investigated using multisurface nonadiabatic wave packet calculations. The effect is analyzed by examining properties like the photodissociation reaction times and the CH(3) fragment vibrational and rotational distributions, by using four different widths of the pump and probe pulses, namely pulses with full-width-at-half-maximum of 100, 50, 20, and 10 fs. Simulations are carried out for two different excitation wavelengths, 295 and 230 nm, located to the red and to the blue of the maximum of the absorption spectrum, in order to explore possible effects of the excitation wavelength. The reaction times are found to decrease significantly with decreasing pulse temporal width. The times associated with the CH(3) + I*((2)P(1/2)) dissociation channels decrease more remarkably than those of the CH(3) + I((2)P(3/2)) channels. The results indicate that for excitation wavelengths located to the blue of the absorption spectrum maximum the effect of changing the pulse width is less pronounced than for wavelengths to the red of the spectrum maximum. On the contrary, the CH(3) vibrational and rotational distributions show little variation upon large changes in the pulse width. The trends found are explained in terms of the changes in the spectral bandwidth of the pulses and of the shape and slope of the absorption spectrum at the different excitation wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA