Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 15: 3000-3008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31976009

RESUMO

Aminoazobenzene derivatives with four ortho substituents with respect to the N-N double bond are a relatively unexplored class of azo compounds that show promise for use as photoswitches in biology. Tetra-ortho-methoxy-substituted aminoazobenzene compounds in particular can form azonium ions under physiological conditions and exhibit red-light photoswitching. Here, we report the synthesis and characterization of two bis(4-amino-2-bromo-6-methoxy)azobenzene derivatives. These compounds form red-light-absorbing azonium ions, but only under very acidic conditions (pH < 1). While the low pK a makes the azonium form unsuitable, the neutral versions of these compounds undergo trans-to-cis photoisomerization with blue-green light and exhibit slow (τ1/2 ≈ 10 min) thermal reversion and so may find applications under physiological conditions.

2.
J Am Chem Soc ; 139(38): 13483-13486, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28885845

RESUMO

Biological tissue exhibits an absorbance minimum in the near-infrared between 700 and 900 nm that permits deep penetration of light. Molecules that undergo photoisomerization in this bio-optical window are highly desirable as core structures for the development of photopharmaceuticals and as components of chemical-biological tools. We report the systematic design, synthesis, and testing of an azobenzene derivative tailored to undergo single-photon photoswitching with near-infrared light under physiological conditions. A fused dioxane ring and a methoxy substituent were used to place oxygen atoms in all four ortho positions, as well as two meta positions, relative to the azobenzene N═N double bond. This substitution pattern, together with a para pyrrolidine group, raises the pKa of the molecule so that it is protonated at physiological pH and absorbs at wavelengths >700 nm. This azobenzene derivative, termed DOM-azo, is stable for months in neutral aqueous solutions, undergoes trans-to-cis photoswitching with 720 nm light, and thermally reverts to the stable trans isomer with a half-life near 1 s.


Assuntos
Compostos Azo/química , Compostos Azo/efeitos da radiação , Raios Infravermelhos , Processos Fotoquímicos/efeitos da radiação , Concentração de Íons de Hidrogênio , Isomerismo , Prótons , Pirrolidinas/química
3.
Acc Chem Res ; 48(10): 2662-70, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26415024

RESUMO

Recently, there has been a great deal of interest in using the photoisomerization of azobenzene compounds to control specific biological targets in vivo. These azo compounds can be used as research tools or, in principle, could act as optically controlled drugs. Such "photopharmaceuticals" offer the prospect of targeted drug action and an unprecedented degree of temporal control. A key feature of azo compounds designed to photoswitch in vivo is the wavelength of light required to cause the photoisomerization. To pass through tissue such as the human hand, wavelengths in the red, far-red, or ideally near infrared region are required. This Account describes our attempts to produce such azo compounds. Introducing electron-donating or push/pull substituents at the para positions delocalizes the azobenzene chromophore and leads to long wavelength absorption but usually also lowers the thermal barrier to interconversion of the isomers. Fast thermal relaxation means it is difficult to produce a large steady state fraction of the cis isomer. Thus, specifically activating or inhibiting a biological process with the cis isomer would require an impractically bright light source. We have found that introducing substituents at all four ortho positions leads to azo compounds with a number of unusual properties that are useful for in vivo photoswitching. When the para substituents are amide groups, these tetra-ortho substituted azo compounds show unusually slow thermal relaxation rates and enhanced separation of n-π* transitions of cis and trans isomers compared to analogues without ortho substituents. When para positions are substituted with amino groups, ortho methoxy groups greatly stabilize the azonium form of the compounds, in which the azo group is protonated. Azonium ions absorb strongly in the red region of the spectrum and can reach into the near-IR. These azonium ions can exhibit robust cis-trans isomerization in aqueous solutions at neutral pH. By varying the nature of ortho substituents, together with the number and nature of meta and para substituents, long wavelength switching, stability to photobleaching, stability to hydrolysis, and stability to reduction by thiols can all be crafted into a photoswitch. Some of these newly developed photoswitches can be used in whole blood and show promise for effective use in vivo. It is hoped they can be combined with appropriate bioactive targets to realize the potential of photopharmacology.


Assuntos
Compostos Azo/química , Animais , Compostos Azo/farmacologia , Humanos , Processos Fotoquímicos , Relação Estrutura-Atividade
4.
J Am Chem Soc ; 135(26): 9777-84, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23750583

RESUMO

The photoisomerization of azobenzenes provides a general means for the photocontrol of molecular structure and function. For applications in vivo, however, the wavelength of irradiation required for trans-to-cis isomerization of azobenzenes is critical since UV and most visible wavelengths are strongly scattered by cells and tissues. We report here that azobenzene compounds in which all four positions ortho to the azo group are substituted with bulky electron-rich substituents can be effectively isomerized with red light (630-660 nm), a wavelength range that is orders of magnitude more penetrating through tissue than other parts of the visible spectrum. When the ortho substituent is chloro, the compounds also exhibit stability to reduction by glutathione, enabling their use in intracellular environments in vivo.


Assuntos
Compostos Azo/química , Luz , Compostos Azo/síntese química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA