Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822135

RESUMO

BACKGROUND: Infants born preterm have a higher incidence of neurological deficits. A key step in finding effective treatments is to identify biomarkers that reliably predict outcome. METHODS: Following umbilical cord occlusion (UCO) in pregnant sheep, whole fetal blood RNA was sequenced pre- and post-UCO, brain injury outcome was determined by battery of neuropathology scoring and the transcriptome signature correlated to the degree of brain injury. Additionally, we developed a novel analytical procedure to deduce cell blood composition over time. RESULTS: Sixty-one genes were identified with significant altered expression after UCO. In pre-UCO blood, the level of three mRNAs (Trex2, Znf280b, novel miRNA) and in post-UCO, four mRNAs (Fam184a, Angptl2, novel lincRNA and an unknown protein-coding gene) were associated to brain injury (FDR < 0.01). Several of these mRNAs are related to inflammation and angiogenesis. Pathway analysis highlighted genes playing a role in perinatal death and growth failure. Results also indicate that several leukocyte populations undergo significant changes after UCO. CONCLUSION: We have used a whole transcriptomic approach to uncover novel biomarkers in fetal blood that correlate to neuropathology in the preterm sheep brain. The current data forms a basis for future studies to investigate mechanisms of these mRNAs in the injury progression. IMPACT: Trend analysis of genes following asphyxia reveal a group of genes associated with perinatal death and growth failure. Several pre-asphyxia transcripts were associated to brain injury severity suggesting genomic susceptibility to injury. Several post-asphyxia transcripts were correlated to brain injury severity, thus, serve as potential novel biomarkers of injury outcome. Successfully adaptation of cell profiling algorithms suggests significant changes in blood cell composition following asphyxia.

2.
Cereb Cortex ; 33(14): 8921-8941, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254801

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.


Assuntos
Síndrome de Down , Substância Branca , Recém-Nascido , Criança , Humanos , Síndrome de Down/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
3.
J Physiol ; 599(12): 3221-3236, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977538

RESUMO

KEY POINTS: Brief episodes of severe fetal hypoxia can arise in late gestation as a result of interruption of normal umbilical blood flow Systemic parameters and blood chemistry indicate complete recovery within 1-2 hours, although the long-term effects on fetal brain functions are unknown Fetal sheep were subjected to umbilical cord occlusion (UCO) for 10 min at 131 days of gestation, and then monitored intensively until onset of labour or delivery (<145 days of gestation) Normal patterns of fetal behaviour, including breathing movements, episodes of high and low voltage electorcortical activity, eye movements and postural (neck) muscle activity, were disrupted for 3-10 days after the UCO Preterm labour and delivery occurred in a significant number of the pregnancies after UCO compared to the control (sham-UCO) cohort. ABSTRACT: Complications arising from antepartum events such as impaired umbilical blood flow can cause significant fetal hypoxia. These complications can be unpredictable, as well as difficult to detect, and thus we lack a detailed understanding of the (patho)physiological changes that occur between the antenatal in utero event and birth. In the present study, we assessed the consequences of brief (∼10 min) umbilical cord occlusion (UCO) in fetal sheep at ∼0.88 gestation on fetal plasma cortisol concentrations and fetal behaviour [electrocortical (EcoG), electo-oculargram (EOG), nuchal muscle electromyography (EMG) and breathing activities] in the days following UCO. UCO caused a rapid onset of fetal hypoxaemia, hypercapnia, and acidosis; however, by 6 h, all blood parameters and cardiovascular status were normalized and not different from the control (Sham-UCO) cohort. Subsequently, the incidence of fetal breathing movements decreased compared to the control group, and abnormal behavioural patterns developed over the days following UCO and leading up to the onset of labour, which included increased high voltage and sub-low voltage ECoG and EOG activities, as well as decreased nuchal EMG activity. Fetuses subjected to UCO went into labour 7.9 ± 3.6 days post-UCO (139.5 ± 3.2 days of gestation) compared to the control group fetuses at 13.6 ± 3.3 days post-sham UCO (144 ± 2.2 days of gestation; P < 0.05), despite comparable increases in fetal plasma cortisol and a similar body weight at birth. Thus, a single transient episode of complete UCO late in gestation in fetal sheep can result in prolonged effects on fetal brain activity and premature labour, suggesting persisting effects on fetal cerebral metabolism.


Assuntos
Trabalho de Parto , Cordão Umbilical , Animais , Feminino , Hipóxia Fetal , Feto , Hipóxia , Gravidez , Ovinos
4.
Neurobiol Dis ; 153: 105316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711492

RESUMO

The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Feto/metabolismo , Inositol/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Colina/metabolismo , Creatina/metabolismo , Feminino , Feto/embriologia , Glicina/metabolismo , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Masculino
5.
Magn Reson Med ; 84(1): 221-236, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31846122

RESUMO

PURPOSE: The widespread clinical application of quantitative MRI has been hindered by a lack of reproducibility across sites and vendors. Previous work has attributed this to incorrect B1 mapping or insufficient spoiling conditions. We recently proposed the controlled saturation magnetization transfer (CSMT) framework and hypothesized that the lack of reproducibility can also be attributed to magnetization transfer effects. This work seeks to validate this hypothesis and demonstrate that reproducible multivendor single-pool relaxometry can be achieved with the CSMT approach. METHODS: Three healthy volunteers were scanned on scanners from 3 vendors (GE Healthcare, Philips, Siemens). An extensive set of images necessary for joint T1 and T2 estimation were acquired with (1) each vendor default RF pulses and spoiling conditions; (2) harmonized RF spoiling; and (3) harmonized RF spoiling and CSMT pulses. Different subsets of images were used to generate 6 different T1 and T2 maps for each subject's data from each vendor. Cross-protocol, cross-vendor, and test/retest variability were estimated. RESULTS: Harmonized RF spoiling conditions are insufficient to ensure good cross-vendor reproducibility. Controlled saturation magnetization transfer allows cross-protocol variability to be reduced from 18.3% to 4.0%. Whole-brain variability using the same protocol was reduced from a maximum of 19% to 4.5% across sites. Both CSMT and native vendor RF conditions have a reported variability of less than 5% for repeat measures on the same vendor. CONCLUSION: Magnetization transfer effects are a major contributor to intersite/intrasite variability of T1 and T2 estimation. Controlled saturation magnetization transfer stabilizes these effects, paving the way for the use of single-pool T1 and T2 as a reliable source for clinical diagnosis across sites.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Reprodutibilidade dos Testes
6.
Am J Pathol ; 188(3): 757-767, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248460

RESUMO

Brain injury in premature infants, especially periventricular leukomalacia, is an important cause of neurologic disabilities. Inflammation contributes to perinatal brain injury development, but the essential mediators that lead to early-life brain injury remain largely unknown. Neonates have reduced capacity for mounting conventional αßT-cell responses. However, γδT cells are already functionally competent during early development and are important in early-life immunity. We investigated the potential contribution of γδT cells to preterm brain injury using postmortem brains from human preterm infants with periventricular leukomalacia and two animal models of preterm brain injury-the hypoxic-ischemic mouse model and a fetal sheep asphyxia model. Large numbers of γδT cells were observed in the brains of mice, sheep, and postmortem preterm infants after injury, and depletion of γδT cells provided protection in the mouse model. The common γδT-cell-associated cytokines interferon-γ and IL-17A were not detectable in the brain. Although there were increased mRNA levels of Il17f and Il22 in the mouse brains after injury, neither IL-17F nor IL-22 cytokines contributed to preterm brain injury. These findings highlight unique features of injury in the developing brain, where, unlike injury in the mature brain, γδT cells function as initiators of injury independently of common γδT-cell-associated cytokines. This finding will help to identify therapeutic targets for preventing or treating preterm infants with brain injury.


Assuntos
Encéfalo/patologia , Hipóxia-Isquemia Encefálica/patologia , Linfócitos Intraepiteliais/patologia , Leucomalácia Periventricular/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Leucomalácia Periventricular/metabolismo , Masculino , Camundongos , Ovinos
7.
Dev Med Child Neurol ; 61(8): 867-879, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102269

RESUMO

Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.


NUEVOS ENFOQUES PARA ESTUDIAR EL DESARROLLO CEREBRAL TEMPRANO EN EL SÍNDROME DE DOWN: El síndrome de Down es el trastorno del desarrollo genético más común en los seres humanos y es causado por la triplicación parcial o completa del cromosoma 21 (trisomía 21). Es una condición compleja que se traduce en múltiples problemas de salud a lo largo de toda la vida, incluidos diversos grados de discapacidad intelectual y retrasos en el habla, la memoria y el aprendizaje. Debido a que la duración y la calidad de vida están mejorando para las personas con síndrome de Down, ahora se está prestando atención a la comprensión y al tratamiento de las dificultades cognitivas asociadas y sus sustratos biológicos subyacentes. Estos estudios han incluido estudios de imagen y postmortem que han identificado volúmenes cerebrales regionales disminuidos y anomalías histológicas que acompañan a la demencia de inicio temprano. Además, los avances en el análisis del genoma completo y los modelos de ratones con síndrome de Down brindan información valiosa sobre los posibles objetivos de la intervención que podrían mejorar la neurogénesis y la cognición a largo plazo. Como se sabe poco sobre el desarrollo temprano del cerebro en el síndrome de Down humano, revisamos los avances recientes en imágenes de resonancia magnética que permiten la visualización no invasiva de la macro y microestructura cerebral, incluso en el útero. Se espera que, en conjunto, estos avances puedan permitir que el síndrome de Down se convierta en uno de los primeros trastornos genéticos a los que se aplican tratamientos prenatales diseñados para "encauzar" el desarrollo cerebral.


NOVAS ABORDAGENS PARA O ESTUDO DE DESENVOLVIMENTO CEREBRAL PRECOCE NA SÍNDROME DE DOWN: A síndrome de Down é a desordem desenvolvimental de origem genética mais comum em humanos. É causada por triplicação parcial ou completa do cromossomo 21 (trissomia do 21). Trata-se de uma condição complexa que resulta em múltiplos problemas de saúde ao longo da vida, incluindo graus variados de deficiência intelectual, e atrasos na fala, memória e aprendizagem. Como tanto a duração quanto a qualidade de vida têm melhorado para indivíduos com síndrome de Down, agora a atenção se volta para compreender e potencialmente tratar dificuldades cognitivas associadas e seus substratos biológicos de base. Incluem-se estudos de imagem e pós-morte que identificaram menores volumes cerebrais e anomalias histológicas que acompanham a demência de início precoe. Além disso, avanços na análise do genoma em modelos de ratos com síndrome de Down fornecem informações valiosas sobre potenciais alvos para intervenção que podem melhorar a neurogênese e a cognição em longo prazo. Como pouco se sabe sobre o desenvolvimento cerebral precoce na síndrome de Down, nós revisamos avanços recentes em imagens por ressonância magnética que permitem visualização não-invasiva da macro- e micro-estrutura do cérebro, mesmo no útero. Espera-se que, juntos, estes avanços possibilitem que a síndrome de Down se torne a primeira desorgem genética a ser alvo de tratamentos antenatais voltados para "normalizar" o desenvolvimento cerebral.


Assuntos
Encéfalo/crescimento & desenvolvimento , Síndrome de Down/diagnóstico por imagem , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
8.
Brain Behav Immun ; 74: 265-276, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30218783

RESUMO

Fifteen million babies are born preterm every year and a significant number suffer from permanent neurological injuries linked to white matter injury (WMI). A chief cause of preterm birth itself and predictor of the severity of WMI is exposure to maternal-fetal infection-inflammation such as chorioamnionitis. There are no neurotherapeutics for this WMI. To affect this healthcare need, the repurposing of drugs with efficacy in other white matter injury models is an attractive strategy. As such, we tested the efficacy of GSK247246, an H3R antagonist/inverse agonist, in a model of inflammation-mediated WMI of the preterm born infant recapitulating the main clinical hallmarks of human brain injury, which are oligodendrocyte maturation arrest, microglial reactivity, and hypomyelination. WMI is induced by mimicking the effects of maternal-fetal infection-inflammation and setting up neuroinflammation. We induce this process at the time in the mouse when brain development is equivalent to the human third trimester; postnatal day (P)1 through to P5 with i.p. interleukin-1ß (IL-1ß) injections. We initiated GSK247246 treatment (i.p at 7 mg/kg or 20 mg/kg) after neuroinflammation was well established (on P6) and it was administered twice daily through to P10. Outcomes were assessed at P10 and P30 with gene and protein analysis. A low dose of GSK247246 (7 mg/kg) lead to a recovery in protein expression of markers of myelin (density of Myelin Basic Protein, MBP & Proteolipid Proteins, PLP) and a reduction in macro- and microgliosis (density of ionising adaptor protein, IBA1 & glial fibrillary acid protein, GFAP). Our results confirm the neurotherapeutic efficacy of targeting the H3R for WMI seen in a cuprizone model of multiple sclerosis and a recently reported clinical trial in relapsing-remitting multiple sclerosis patients. Further work is needed to develop a slow release strategy for this agent and test its efficacy in large animal models of preterm infant WMI.


Assuntos
Antagonistas dos Receptores Histamínicos H3/farmacologia , Substância Branca/lesões , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encefalopatias/tratamento farmacológico , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurogênese , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligodendroglia , Gravidez , Nascimento Prematuro/tratamento farmacológico , Receptores Histamínicos/metabolismo , Substância Branca/metabolismo
9.
Biochem Soc Trans ; 45(5): 1067-1076, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28939695

RESUMO

Birth asphyxia in term neonates affects 1-2/1000 live births and results in the development of hypoxic-ischaemic encephalopathy with devastating life-long consequences. The majority of neuronal cell death occurs with a delay, providing the potential of a treatment window within which to act. Currently, treatment options are limited to therapeutic hypothermia which is not universally successful. To identify new interventions, we need to understand the molecular mechanisms underlying the injury. Here, we provide an overview of the contribution of both oxidative stress and endoplasmic reticulum stress in the development of neonatal brain injury and identify current preclinical therapeutic strategies.


Assuntos
Asfixia Neonatal/complicações , Hipóxia-Isquemia Encefálica/etiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Asfixia Neonatal/tratamento farmacológico , Asfixia Neonatal/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos
11.
J Biol Chem ; 289(13): 9430-9, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24509861

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI.


Assuntos
Sistema Nervoso Central/patologia , Hipóxia/patologia , Isquemia/patologia , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Hipóxia/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/farmacologia , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/patologia , Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Necrose Tumoral alfa/farmacologia
12.
Dev Neurosci ; 37(4-5): 321-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25823427

RESUMO

Apoptotic mechanisms are centre stage for the development of injury in the immature brain, and caspases have been shown to play a pivotal role during brain development and in response to injury. The inhibition of caspases using broad-spectrum agents such as Q-VD-OPh is neuroprotective in the immature brain. Caspase-6, an effector caspase, has been widely researched in neurodevelopmental disorders and found to be important following adult stroke, but its function in the neonatal brain has yet to be detailed. Furthermore, caspases may be important in microglial activation; microglia are required for optimal brain development and following injury, and their close involvement during neuronal cell death suggests that apoptotic cues such as caspase activation may be important in microglial activation. Therefore, in this study we aimed to investigate the possible apoptotic and non-apoptotic functions caspase-6 may have in the immature brain in response to hypoxia-ischaemia. We examined whether caspases are involved in microglial activation. We assessed cleaved caspase-6 expression following hypoxia-ischaemia and conducted primary microglial cultures to assess whether the broad-spectrum inhibitor Q-VD-OPh or caspase-6 gene deletion affected lipopolysaccharide (LPS)-mediated microglial activation and phenotype. We observed cleaved caspase-6 expression to be low but present in the cell body and cell processes in both a human case of white matter injury and 72 h following hypoxia-ischaemia in the rat. Gene deletion of caspase-6 did not affect the outcome of brain injury following mild (50 min) or severe (60 min) hypoxia-ischaemia. Interestingly, we did note that cleaved caspase-6 was co-localised with microglia that were not of apoptotic morphology. We observed that mRNA of a number of caspases was modulated by low-dose LPS stimulation of primary microglia. Q-VD-OPh treatment and caspase-6 gene deletion did not affect microglial activation but modified slightly the M2b phenotype response by changing the time course of SOCS3 expression after LPS administration. Our results suggest that the impact of active caspase-6 in the developing brain is subtle, and we believe there are predominantly other caspases (caspase-2, -3, -8, -9) that are essential for the cell death processes in the immature brain.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/crescimento & desenvolvimento , Caspase 6/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Lesões Encefálicas/etiologia , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Camundongos Knockout , Ratos
13.
Int J Mol Sci ; 16(9): 22509-26, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393574

RESUMO

Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Metaloendopeptidases/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia-Isquemia Encefálica/patologia , Potencial da Membrana Mitocondrial , Metaloproteases/metabolismo , Camundongos , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional
14.
Microvasc Res ; 85: 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041509

RESUMO

Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 µm) to larger (≤100 µm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia.


Assuntos
Encéfalo/embriologia , Circulação Cerebrovascular , Hipóxia , Animais , Encéfalo/patologia , Cateterismo , Biologia do Desenvolvimento , Feminino , Imuno-Histoquímica/métodos , Laminina/metabolismo , Gravidez , Prenhez , Ovinos , Carneiro Doméstico , Fatores de Tempo , Cordão Umbilical/patologia
15.
Pediatr Res ; 73(3): 310-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23222909

RESUMO

BACKGROUND: Fetal hypoxia contributes significantly to the pathogenesis of permanent perinatal brain injury. We hypothesized that hypoxia-induced cerebral angiogenesis and microvascular changes would occur in fetal sheep subjected to a severe hypoxic insult produced by umbilical cord occlusion (UCO) for 10 min. METHODS: At 124-126 d of gestation, singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10-min UCO or sham UCO (n = 5) was induced at 130 d gestation. The fetal brain was collected at 24 h (n = 5) or 48 h (n = 4) after UCO for immunohistochemical analysis of vascular endothelial growth factor (VEGF), Ki67, and serum albumin. RESULTS: By 48 h after UCO, the percentage of blood vessels expressing VEGF had increased in the subventricular zone, periventricular and subcortical white matter, corpus callosum, and cortex. Alterations in vascular permeability (albumin extravasation) were observed only in the periventricular and subcortical white matter and the subventricular zone following UCO. CONCLUSION: The upregulation of VEGF expression and increased leakage of plasma protein in the fetal sheep brain show that the microvasculature in white matter is sensitive to hypoxia in the near-term brain.


Assuntos
Hipóxia Fetal/metabolismo , Hipóxia Encefálica/metabolismo , Neovascularização Patológica/etiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Animais , Gasometria , Pressão Sanguínea , Hipóxia Fetal/complicações , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Hipóxia Encefálica/complicações , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Ligadura , Albumina Sérica/análise , Ovinos , Fatores de Tempo , Cordão Umbilical/cirurgia
16.
Acta Neuropathol Commun ; 9(1): 166, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654477

RESUMO

Osteopontin (OPN) is a matricellular protein that mediates various physiological functions and is implicated in neuroinflammation, myelination, and perinatal brain injury. However, its expression in association with brain injury in preterm infants is unexplored. Here we examined the expression of OPN in postmortem brains of preterm infants and explored how this expression is affected in brain injury. We analyzed brain sections from cases with white matter injury (WMI) and cases with germinal matrix hemorrhage (GMH) and compared them to control cases having no brain injury. WMI cases displayed moderate to severe tissue injury in the periventricular and deep white matter that was accompanied by an increase of microglia with amoeboid morphology. Apart from visible hemorrhage in the germinal matrix, GMH cases displayed diffuse white matter injury in the periventricular and deep white matter. In non-injured preterm brains, OPN was expressed at low levels in microglia, astrocytes, and oligodendrocytes. OPN expression was significantly increased in regions with white matter injury in both WMI cases and GMH cases. The main cellular source of OPN in white matter injury areas was amoeboid microglia, although a significant increase was also observed in astrocytes in WMI cases. OPN was not expressed in the germinal matrix of any case, regardless of whether there was hemorrhage. In conclusion, preterm brain injury induces elevated OPN expression in microglia and astrocytes, and this increase is found in sites closely related to injury in the white matter regions but not with the hemorrhage site in the germinal matrix. Thus, it appears that OPN takes part in the inflammatory process in white matter injury in preterm infants, and these findings facilitate our understanding of OPN's role under both physiological and pathological conditions in the human brain that may lead to greater elucidation of disease mechanisms and potentially better treatment strategies.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Recém-Nascido Prematuro , Osteopontina/biossíntese , Substância Branca/metabolismo , Substância Branca/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Hemorragia Cerebral/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino
17.
Acta Neuropathol Commun ; 8(1): 141, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819430

RESUMO

Down syndrome (DS) occurs with triplication of human chromosome 21 and is associated with deviations in cortical development evidenced by simplified gyral appearance and reduced cortical surface area. Radial glia are neuronal and glial progenitors that also create a scaffolding structure essential for migrating neurons to reach cortical targets and therefore play a critical role in cortical development. The aim of this study was to characterise radial glial expression pattern and morphology in the frontal lobe of the developing human fetal brain with DS and age-matched controls. Secondly, we investigated whether microstructural information from in vivo magnetic resonance imaging (MRI) could reflect histological findings from human brain tissue samples. Immunohistochemistry was performed on paraffin-embedded human post-mortem brain tissue from nine fetuses and neonates with DS (15-39 gestational weeks (GW)) and nine euploid age-matched brains (18-39 GW). Radial glia markers CRYAB, HOPX, SOX2, GFAP and Vimentin were assessed in the Ventricular Zone, Subventricular Zone and Intermediate Zone. In vivo diffusion MRI was used to assess microstructure in these regions in one DS (21 GW) and one control (22 GW) fetal brain. We found a significant reduction in radial glial progenitor SOX2 and subtle deviations in radial glia expression (GFAP and Vimentin) prior to 24 GW in DS. In vivo, fetal MRI demonstrates underlying radial projections consistent with immunohistopathology. Radial glial alterations may contribute to the subsequent simplified gyral patterns and decreased cortical volumes observed in the DS brain. Recent advances in fetal MRI acquisition and analysis could provide non-invasive imaging-based biomarkers of early developmental deviations.


Assuntos
Síndrome de Down/embriologia , Síndrome de Down/patologia , Células Ependimogliais/patologia , Lobo Frontal/embriologia , Lobo Frontal/patologia , Feminino , Feto , Humanos , Recém-Nascido , Masculino , Neurogênese/fisiologia
18.
Neuroimage Clin ; 25: 102139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31887718

RESUMO

Down Syndrome (DS) is the most frequent genetic cause of intellectual disability with a wide spectrum of neurodevelopmental outcomes. At present, the relationship between structural brain morphology and the spectrum of cognitive phenotypes in DS, is not well understood. This study aimed to quantify the development of the fetal and neonatal brain in DS participants, with and without a congenital cardiac defect compared with a control population using dedicated, optimised and motion-corrected in vivo magnetic resonance imaging (MRI). We detected deviations in development and altered regional brain growth in the fetus with DS from 21 weeks' gestation, when compared to age-matched controls. Reduced cerebellar volume was apparent in the second trimester with significant alteration in cortical growth becoming evident during the third trimester. Developmental abnormalities in the cortex and cerebellum are likely substrates for later neurocognitive impairment, and ongoing studies will allow us to confirm the role of antenatal MRI as an early biomarker for subsequent cognitive ability in DS. In the era of rapidly developing technologies, we believe that the results of this study will assist counselling for prospective parents.


Assuntos
Cerebelo , Córtex Cerebral , Síndrome de Down/diagnóstico por imagem , Desenvolvimento Fetal , Feto , Cardiopatias Congênitas , Biomarcadores , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/anormalidades , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Comorbidade , Síndrome de Down/epidemiologia , Síndrome de Down/patologia , Feminino , Desenvolvimento Fetal/fisiologia , Feto/anormalidades , Feto/diagnóstico por imagem , Idade Gestacional , Cardiopatias Congênitas/epidemiologia , Humanos , Recém-Nascido , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Gravidez , Diagnóstico Pré-Natal
19.
Am J Physiol Regul Integr Comp Physiol ; 297(1): R60-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19403864

RESUMO

Severe global fetal asphyxia, if caused by a brief occlusion of the umbilical cord, results in prolonged cerebral hypoperfusion in fetal sheep. In this study, we sought evidence to support the hypothesis that cerebral hypoperfusion is a consequence of suppressed cerebral metabolism. In the 24 h following complete occlusion of the umbilical cord for 10 min, sagittal sinus blood flow velocity was significantly decreased for up to 12 h. Capillary blood flow, measured using microspheres, decreased at 1 and 5 h after cord occlusion in many brain regions, including cortical gray and white matter. Microdialysis probes implanted in the cerebral cortex revealed an increase in extracellular glucose concentrations in gray matter for 7-8 h postasphyxia, while lactate increased only briefly, suggesting decreased cerebral glucose utilization over this time. Although these data, as well as the concurrent suppression of breathing movements and electrocortical activity, support the concept of hypometabolic hypoperfusion, the significant increase of pyruvate and glycerol concentrations in dialysate fluid obtained from the cerebral cortex at 3-8 h after cord occlusion suggests an eventual loss of membrane integrity. The prolonged increase of breathing movements for many hours suggests loss of the pontine/thalamic control that produces the distinct pattern of fetal breathing movements.


Assuntos
Asfixia/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular , Metabolismo Energético , Hipóxia Fetal/fisiopatologia , Mecânica Respiratória , Cordão Umbilical/irrigação sanguínea , Animais , Asfixia/sangue , Asfixia/líquido cefalorraquidiano , Asfixia/embriologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Encéfalo/embriologia , Dióxido de Carbono/sangue , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Sangue Fetal/metabolismo , Hipóxia Fetal/sangue , Hipóxia Fetal/líquido cefalorraquidiano , Idade Gestacional , Glucose/líquido cefalorraquidiano , Glicerol/líquido cefalorraquidiano , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Ácido Láctico/líquido cefalorraquidiano , Microdiálise , Oxigênio/sangue , Gravidez , Ácido Pirúvico/líquido cefalorraquidiano , Ovinos , Fatores de Tempo , Cordão Umbilical/cirurgia
20.
Front Physiol ; 10: 563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178744

RESUMO

INTRODUCTION: Cerebral white matter injury is the most common neuropathology observed in preterm infants. However, there is increasing evidence that gray matter development also contributes to neurodevelopmental abnormalities. Fetal cerebral ischemia can lead to both neuronal and non-neuronal structural-functional abnormalities, but less is known about the specific effects on interneurons. OBJECTIVE: In this study we used a well-established animal model of fetal asphyxia in preterm fetal sheep to study neuropathological outcome. We used comprehensive stereological methods to investigate the total number of oligodendrocytes, neurons and somatostatin (STT) positive interneurons as well as 3D morphological analysis of STT cells 14 days following umbilical cord occlusion (UCO) in fetal sheep. MATERIALS AND METHODS: Induction of asphyxia was performed by 25 min of complete UCO in five preterm fetal sheep (98-100 days gestational age). Seven, non-occluded twins served as controls. Quantification of the number of neurons (NeuN), STT interneurons and oligodendrocytes (Olig2, CNPase) was performed on fetal brain regions by applying optical fractionator method. A 3D morphological analysis of STT interneurons was performed using IMARIS software. RESULTS: The number of Olig2, NeuN, and STT positive cells were reduced in IGWM, caudate and putamen in UCO animals compared to controls. There were also fewer STT interneurons in the ventral part of the hippocampus, the subiculum and the entorhinal cortex in UCO group, while other parts of cortex were virtually unaffected (p > 0.05). Morphologically, STT positive interneurons showed a markedly immature structure, with shorter dendritic length and fewer dendritic branches in cortex, caudate, putamen, and subiculum in the UCO group compared with control group (p < 0.05). CONCLUSION: The significant reduction in the total number of neurons and oligodendrocytes in several brain regions confirm previous studies showing susceptibility of both neuronal and non-neuronal cells following fetal asphyxia. However, in the cerebral cortex significant dysmaturation of STT positive neurons occurred in the absence of cell loss. This suggests an abnormal maturation pattern of GABAergic interneurons in the cerebral cortex, which might contribute to neurodevelopmental impairment in preterm infants and could implicate a novel target for neuroprotective therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA