Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339010

RESUMO

Bladder cancer (BC) constitutes one of the most diagnosed types of cancer worldwide. Advancements in and new methodologies for DNA sequencing, leading to high-throughput microbiota testing, have pinpointed discrepancies in urinary microbial fingerprints between healthy individuals and patients with BC. Although several studies suggest an involvement of microbiota dysbiosis in the pathogenesis, progression, and therapeutic response to bladder cancer, an established direct causal relationship remains to be elucidated due to the lack of standardized methodologies associated with such studies. This review compiles an overview of the microbiota of the human urinary tract in healthy and diseased individuals and discusses the evidence to date on microbiome involvement and potential mechanisms by which the microbiota may contribute to the development of BC. We also explore the potential profiling of urinary microbiota as a biomarker for risk stratification, as well as the prediction of the response to intravesical therapies and immunotherapy in BC patients. Further investigation into the urinary microbiome of BC patients is imperative to unravel the complexities of the role played by host-microbe interactions in shaping wellness or disease and yield valuable insights into and strategies for the prevention and personalized treatment of BC.


Assuntos
Microbiota , Neoplasias da Bexiga Urinária , Sistema Urinário , Humanos , Neoplasias da Bexiga Urinária/patologia , Sistema Urinário/patologia , Microbiota/genética , Interações entre Hospedeiro e Microrganismos , Imunoterapia
2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675055

RESUMO

Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias da Próstata , Masculino , Humanos , Microbiota/fisiologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Microbioma Gastrointestinal/fisiologia , Próstata/patologia , Inflamação , Disbiose
3.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902117

RESUMO

Vitamin D is a secosteroid hormone that is highly involved in bone health. Mounting evidence revealed that, in addition to the regulation of mineral metabolism, vitamin D is implicated in cell proliferation and differentiation, vascular and muscular functions, and metabolic health. Since the discovery of vitamin D receptors in T cells, local production of active vitamin D was demonstrated in most immune cells, addressing the interest in the clinical implications of vitamin D status in immune surveillance against infections and autoimmune/inflammatory diseases. T cells, together with B cells, are seen as the main immune cells involved in autoimmune diseases; however, growing interest is currently focused on immune cells of the innate compartment, such as monocytes, macrophages, dendritic cells, and natural killer cells in the initiation phases of autoimmunity. Here we reviewed recent advances in the onset and regulation of Graves' and Hashimoto's thyroiditis, vitiligo, and multiple sclerosis in relation to the role of innate immune cells and their crosstalk with vitamin D and acquired immune cells.


Assuntos
Doenças Autoimunes , Doença de Graves , Doença de Hashimoto , Humanos , Vitamina D/fisiologia , Doença de Graves/epidemiologia , Vitaminas
4.
Pharmacol Res ; 168: 105592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33813027

RESUMO

Abnormal glycolytic metabolism contributes to angiogenic sprouting involved in atherogenesis. We investigated the potential anti-angiogenic properties of specific 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) inhibitors in endothelial cells (ECs). ECs were treated with PFKFB3 inhibitors (named PA-1 and PA-2) and their effects on metabolic and functional characteristics of ECs were investigated. The anti-glycolytic compound 3-(pyridinyl)- 1-(4-pyridinyl)- 2-propen-1-one (3PO) was used as reference compound. PFKFB3 expression and activity (IC50 about 3-21 nM) was inhibited upon treatment with both compounds. Glucose uptake and lactate export were measured using commercial assays and showed a partial reduction up to 40%. PFKFB3 inhibition increased intracellular lactate accumulation, and reduced expression of monocarboxylate transporters-1 (MCT1) and MCT4. Furthermore, endothelial cell migration and proliferation assays demonstrated significant reduction upon treatment with both compounds. Matrix- metalloproteinase (MMP) activity, measured by gelatin zymography, and expression was significantly reduced (up to 25%). In addition, PA compounds downregulated the expression of VCAM-1, VE-cadherin, VEGFa, VEGFR2, TGF-ß, and IL-1ß, in inflamed ECs. Finally, PA-1 and PA-2 treatment impaired the formation of angiogenic sprouts measured by both morphogenesis and spheroid-based angiogenesis assays. Our data demonstrate that the anti-glycolytic PA compounds may affect several steps involved in angiogenesis. Targeting the key glycolytic enzyme PFKFB3 might represent an attractive therapeutic strategy to improve the efficacy of cancer treatments, or to be applied in other pathologies where angiogenesis is a detrimental factor.


Assuntos
Inibidores da Angiogênese/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Células Cultivadas , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Proteínas Musculares/fisiologia , NAD/metabolismo , Neovascularização Patológica/tratamento farmacológico , Simportadores/fisiologia
5.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998408

RESUMO

Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.


Assuntos
Comunicação Celular/imunologia , Fibrose Endomiocárdica/imunologia , Imunidade Inata , Traumatismo por Reperfusão Miocárdica/imunologia , Miocárdio/imunologia , Miofibroblastos/imunologia , Imunidade Adaptativa , Animais , Citocinas/imunologia , Citocinas/metabolismo , Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/patologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Matriz Extracelular/química , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Humanos , Inflamação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia
6.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354198

RESUMO

Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.


Assuntos
Imunidade Inata/efeitos dos fármacos , Neoplasias Ovarianas/terapia , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Progressão da Doença , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/imunologia
7.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646518

RESUMO

Dietary phytochemicals are particularly attractive for chemoprevention and are able to modulate several signal transduction pathways linked with cancer. Olive oil, a major component of the Mediterranean diet, is an abundant source of phenolic compounds. Olive oil production is associated with the generation of a waste material, termed 'olive mill wastewater' (OMWW) that have been reported to contain water-soluble polyphenols. Prostate cancer (PCa) is considered as an ideal cancer type for chemopreventive approaches, due to its wide incidence but relatively long latency period and progression time. Here, we investigated activities associated with potential preventive properties of a polyphenol-rich olive mill wastewater extract, OMWW (A009), on three in vitro models of PCa. A009 was able to inhibit PCa cell proliferation, adhesion, migration, and invasion. Molecularly, we found that A009 targeted NF-κB and reduced pro-angiogenic growth factor, VEGF, CXCL8, and CXCL12 production. IL-6/STAT3 axis was also regulated by the extract. A009 shows promising properties, and purified hydroxytyrosol (HyT), the major polyphenol component of A009, was also active but not always as effective as A009. Finally, our results support the idea of repositioning a food waste-derived material for nutraceutical employment, with environmental and industrial cost management benefits.


Assuntos
Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Invasividade Neoplásica/patologia , Neovascularização Patológica/patologia , Olea/química , Extratos Vegetais/química , Polifenóis/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Águas Residuárias/química
8.
Blood ; 117(21): 5674-82, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21460246

RESUMO

Natural hemozoin (nHZ), prepared after schizogony, consists of crystalline ferriprotoporphyrin-IX dimers from undigested heme bound to host and parasite proteins and lipids. Phagocytosed nHZ alters important functions of host phagocytes. Most alterations are long-term effects. We show that host fibrinogen (FG) was constantly present (at ~ 1 FG per 25 000 HZ-heme molecules) and stably bound to nHZ from plasma-cultured parasites. FG was responsible for the rapid 100-fold stimulation of reactive oxygen species production and 50-fold increase of TNF and monocyte chemotactic protein 1 by human monocytes. Those effects, starting within minutes after nHZ cell contact, were because of interaction of FG with FG-receptors TLR4 and integrin CD11b/CD18. Receptor blockage by specific mAbs or removal of FG from nHZ abrogated the effects. nHZ-opsonizing IgGs contribute to the stimulatory response but are not essential for FG effects. Immediate increase in reactive oxygen species and TNF may switch on previously described long-term effects of nHZ, largely because of HZ-generated lipo-peroxidation products 15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid and 4-hydroxynonenal. The FG/HZ effects mediated by TLR4/integrins represent a novel paradigm of nHZ activity and allow expansion of nHZ effects to nonphagocytic cells, such as endothelia and airway epithelia, and lead to a better understanding of organ pathology in malaria.


Assuntos
Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Fibrinogênio/metabolismo , Hemeproteínas/metabolismo , Integrinas/metabolismo , Monócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Western Blotting , Células Cultivadas , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Monócitos/parasitologia , Fagocitose , Plasmodium falciparum , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Front Immunol ; 13: 914890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874749

RESUMO

Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Imunoterapia/métodos , Recidiva Local de Neoplasia , Microambiente Tumoral
10.
Mol Ther Nucleic Acids ; 27: 184-199, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976437

RESUMO

CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3' untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.

11.
Childs Nerv Syst ; 27(12): 2077-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21717155

RESUMO

OBJECTIVE: The purpose of this study is to detect different protein profiles in medulloblastoma (MDB) that may be clinically relevant and to check the correspondence of histological classification of MDB with proteomic profiles. MATERIALS AND METHODS: Surgical specimens, snap frozen at the time of neurosurgery, entered the proteomic study. Eight samples from patients (age range, 4 months-26 years) with different MDB histotypes (five classic, one desmoplastic/nodular, one with extensive nodularity, and one anaplastic) were analyzed by two-dimensional gel electrophoresis. One sample for each histotype was further characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis. RESULTS: Eighty-six unique proteins were identified and compared to histology, with the determination of proteins expressed by single histotypes and of a smaller number of proteins shared by two or three histotypes. The sharp difference of protein expression was found to be in agreement with WHO histological classification, with the identification of type-specific proteins with limited overlapping between histotypes. CONCLUSION: Proteomic analysis confirmed and strengthened the difference between histotypes as biologically relevant. Cluster analysis enhanced the distance of extensive nodularity MDB from other histotypes. Possible innovative approaches to therapy may rely upon a proteomic-based classification of MDB tightly correlated to histology. The utility of snap freezing tumoral samples must be stressed and should become a mandatory task for pathologists.


Assuntos
Neoplasias Cerebelares/metabolismo , Eletroforese em Gel Bidimensional/métodos , Meduloblastoma/metabolismo , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adolescente , Adulto , Neoplasias Cerebelares/classificação , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/classificação , Peroxirredoxinas/análise , Peroxirredoxinas/metabolismo , Proteômica , Estatmina/análise , Estatmina/metabolismo , Adulto Jovem
12.
Cells ; 10(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504012

RESUMO

Regulated cell death (RCD) has always been considered a tolerogenic event. Immunogenic cell death (ICD) occurs as a consequence of tumour cell death accompanied by the release of damage-associated molecular patterns (DAMPs), triggering an immune response. ICD plays a major role in stimulating the function of the immune system in cancer during chemotherapy and radiotherapy. ICD can therefore represent one of the routes to boost anticancer immune responses. According to the recommendations of the Nomenclature Committee on Cell Death (2018), apoptosis (type I cell death) and necrosis (type II cell death) represent are not the only types of RCD, which also includes necroptosis, pyroptosis, ferroptosis and others. Specific downstream signalling molecules and death-inducing stimuli can regulate distinct forms of ICD, which develop and promote the immune cell response. Dying cells deliver different potential immunogenic signals, such as DAMPs, which are able to stimulate the immune system. The acute exposure of DAMPs can prime antitumour immunity by inducing activation of antigen-presenting cells (APC), such as dendritic cells (DC), leading to the downstream response by cytotoxic T cells and natural killer cells (NK). As ICD represents an important target to direct and develop new pharmacological interventions, the identification of bioactive natural products, which are endowed with low side effects, higher tolerability and preferentially inducing immunogenic programmed cell death, represents a priority in biomedical research. The ability of ICD to drive the immune response depends on two major factors, neither of which is intrinsic to cell death: 'Antigenicity and adjuvanticity'. Indeed, the use of natural ICD-triggering molecules, alone or in combination with different (immuno)therapies, can result in higher efficacy and tolerability. Here, we focused on natural (marine) compounds, particularly on marine microalgae derived molecules such as exopolysaccharides, sulphated polysaccharides, glycopeptides, glycolipids, phospholipids, that are endowed with ICD-inducing properties and sulfavants. Here, we discuss novel and repurposed small-molecule ICD triggers, as well as their ability to target important molecular pathways including the IL-6, TNF-α and interferons (IFNs), leading to immune stimulation, which could be used alone or in combinatorial immunotherapeutic strategies in cancer prevention and therapies.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Humanos
13.
Front Pharmacol ; 12: 694762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434106

RESUMO

Cardiovascular toxicity remains one of the most adverse side effects in cancer patients receiving chemotherapy. Extra-virgin olive oil (EVOO) is rich in cancer preventive polyphenols endowed with anti-inflammatory, anti-oxidant activities which could exert protective effects on heart cells. One very interesting derivative of EVOO preparation is represented by purified extracts from olive mill waste waters (OMWW) rich in polyphenols. Here, we have investigated the anti-cancer activity of a OMWW preparation, named A009, when combined with chemotherapeutics, as well as its potential cardioprotective activities. Mice bearing prostate cancer (PCa) xenografts were treated with cisplatin, alone or in combination with A009. In an in vivo model, we found synergisms of A009 and cisplatin in reduction of prostate cancer tumor weight. Hearts of mice were analyzed, and the mitochondria were studied by transmission electron microscopy. The hearts of mice co-treated with A009 extracts along with cisplatin had reduced mitochondria damage compared to the those treated with chemotherapy alone, indicating a cardioprotective role. To confirm the in vivo results, tumor cell lines and rat cardiomyocytes were treated with cisplatin in vitro, with and without A009. Another frequently used chemotherapeutic agent 5-fluorouracil (5-FU), was also tested in this assay, observing a similar effect. In vitro, the combination of A009 with cisplatin or 5-FU was effective in decreasing prostate and colon cancer cell growth, while it did not further reduce growth of rat cardiomyocytes also treated with cisplatin or 5-FU. A009 cardioprotective effects towards side effects caused by 5-FU chemotherapy were further investigated, using cardiomyocytes freshly isolated from mice pups. A009 mitigated toxicity of 5-FU on primary cultures of mouse cardiomyocytes. Our study demonstrates that the polyphenol rich purified A009 extracts enhance the effect of chemotherapy in vitro and in vivo, but mitigates chemotherpy adverse effects on heart and on isolated cardiomyocytes. Olive mill waste water extracts could therefore represent a potential candidate for cardiovascular prevention in patients undergoing cancer chemotherapy.

14.
Front Immunol ; 11: 586126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569050

RESUMO

Natural killer (NK) cells, effector lymphocytes of the innate immunity, have been shown to be altered in several cancers, both at tissue and peripheral levels. We have shown that in Non-Small Cell Lung Cancer (NSCLC) and colon cancer, tumour associated circulating NK (TA-NK) and tumour infiltrating NK (TI-NK) exhibit pro-angiogenic phenotype/functions. However, there is still a lack of knowledge concerning the phenotype of peripheral blood (PB) NK (pNK) cells in prostate cancer (PCa). Here, we phenotypically and functionally characterized pNK from PCa patients (PCa TA-NKs) and investigated their interactions with endothelial cells and monocytes/macrophages. NK cell subset distribution in PB of PCa patients was investigated, by multicolor flow cytometry, for surface antigens expression. Protein arrays were performed to characterize the secretome on FACS-sorted pNK cells. Conditioned media (CM) from FACS-sorted PCa pTA-NKs were used to determine their ability to induce pro-inflammatory/pro-angiogenic phenotype/functions in endothelial cells, monocytes, and macrophages. CM from three different PCa (PC-3, DU-145, LNCaP) cell lines, were used to assess their effects on human NK cell polarization in vitro, by multicolor flow cytometry. We found that PCa pTA-NKs acquire the CD56brightCD9+CD49a+CXCR4+ phenotype, increased the expression of markers of exhaustion (PD-1, TIM-3) and are impaired in their degranulation capabilities. Similar effects were observed on healthy donor-derived pNK cells, exposed to conditioned media of three different PCa cell lines, together with increased production of pro-inflammatory chemokines/chemokine receptors CXCR4, CXCL8, CXCL12, reduced production of TNFα, IFNγ and Granzyme-B. PCa TA-NKs released factors able to support inflammatory angiogenesis in an in vitro model and increased the expression of CXCL8, ICAM-1, and VCAM-1 mRNA in endothelial cells. Secretome analysis revealed the ability of PCa TA-NKs to release pro-inflammatory cytokines/chemokines involved in monocyte recruitment and M2-like polarization. Finally, CMs from PCa pTA-NKs recruit THP-1 and peripheral blood CD14+ monocyte and polarize THP-1 and peripheral blood CD14+ monocyte-derived macrophage towards M2-like/TAM macrophages. Our results show that PCa pTA-NKs acquire properties related to the pro-inflammatory angiogenesis in endothelial cells, recruit monocytes and polarize macrophage to an M2-like type phenotype. Our data provides a rationale for a potential use of pNK profiling in PCa patients.


Assuntos
Adenocarcinoma/imunologia , Biomarcadores Tumorais/imunologia , Células Matadoras Naturais/imunologia , Neoplasias da Próstata/imunologia , Adenocarcinoma/sangue , Biomarcadores Tumorais/sangue , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Feminino , Humanos , Subpopulações de Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Neoplasias da Próstata/sangue
15.
Front Oncol ; 10: 156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226771

RESUMO

The immune escape mechanisms at the base of tumor progression in endometrial cancer mimic immune tolerance mechanisms occurring at the maternal-fetal interface. The biological and immunological processes behind the maternal-fetal interface are finely tuned in time and space during embryo implantation and subsequent pregnancy stages; conversely, those behind cancer progression are often aberrant. The environment composition at the maternal-fetal interface parallels the pro-tumor microenvironment identified in many cancers, pointing to the possibility for the use of the maternal-fetal interface as a model to depict immune therapeutic targets in cancer. The framework of cancer environment signatures involved in immune adaptations, precisely timed in cancer progression, could reveal a specific "immune clock" in endometrial cancer, which might guide clinicians in patient risk class assessment, diagnostic workup, management, surgical and therapeutic approach, and surveillance strategies. Here, we review studies approaching this hypothesis, focusing on what is known so far about oncofetal similarities in immunity with the idea to individualize personalized immunotherapy targets, through the downregulation of the immune escape stage or the reactivation of the pro-inflammatory processes suppressed by the tumor.

16.
Cells ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585911

RESUMO

The recent advances, offered by cell therapy in the regenerative medicine field, offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors, such as myoblasts or satellite cells, possess a marked regenerative capacity, but the exploitation of this potential still encounters significant challenges in clinical application, due to low rate of proliferation in vitro, as well as a reduced self-renewal capacity. In this scenario, induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches, but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs, generated from pericytes and fibroblasts, exploiting skeletal muscle-derived extracellular vesicles (EVs), in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological "shuttles" to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Diferenciação Celular , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Adulto Jovem
17.
Dement Geriatr Cogn Disord ; 27(6): 543-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546559

RESUMO

BACKGROUND/AIMS: Recent studies suggested a role for pro-inflammatory mediators in frontotemporal lobar degeneration (FTLD). The objective of this study was to evaluate the association of functionally active polymorphisms in pro-inflammatory cytokine genes with the occurrence and the clinical features of the disease. METHODS: Using a case-control study, we compared allelic and genotypic frequencies of several polymorphisms in the interleukin (IL)-1alpha, interleukin (IL)-1beta, interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha genes between 110 FTLD patients and 119 healthy controls. RESULTS: No significant association between the examined polymorphisms and the disease was found. However, in comparison with remaining genotypes, patients carrying the T/T genotype of the IL-1beta gene showed a significantly lower age at onset of the disease. In addition, scores of the Frontal Assessment Battery were significantly modified by the IL-6 -174G>C polymorphism. CONCLUSION: Our findings support a role for pro-inflammatory cytokine genes in the pathogenesis of frontotemporal lobar degeneration.


Assuntos
Citocinas/genética , Demência/genética , Demência/psicologia , Inflamação/genética , Idade de Início , Idoso , Alelos , Apolipoproteínas E/genética , Estudos de Casos e Controles , DNA/genética , Progressão da Doença , Feminino , Genótipo , Humanos , Interleucinas/genética , Itália , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/genética
18.
Cancers (Basel) ; 11(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939820

RESUMO

. Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-ß, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.

19.
Front Immunol ; 10: 771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057536

RESUMO

Myeloid-derived suppressor cells (MDSCs) contribute to the induction of an immune suppressive/anergic, tumor permissive environment. MDSCs act as immunosuppression orchestrators also by interacting with several components of both innate and adaptive immunity. Natural killer (NK) cells are innate lymphoid cells functioning as primary effector of immunity, against tumors and virus-infected cells. Apart from the previously described anergy and hypo-functionality of NK cells in different tumors, NK cells in cancer patients show pro-angiogenic phenotype and functions, similar to decidual NK cells. We termed the pro-angiogenic NK cells in the tumor microenvironment "tumor infiltrating NK" (TINKs), and peripheral blood NK cells in cancer patients "tumor associated NK" (TANKs). The contribution of MDSCs in regulating NK cell functions in tumor-bearing host, still represent a poorly explored topic, and even less is known on NK cell regulation of MDSCs. Here, we review whether the crosstalk between MDSCs and NK cells can impact on tumor onset, angiogenesis and progression, focusing on key cellular and molecular interactions. We also propose that the similarity of the properties of tumor associated/tumor infiltrating NK and MDSC with those of decidual NK and decidual MDSCs during pregnancy could hint to a possible onco-fetal origin of these pro-angiogenic leukocytes.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Imunidade Adaptativa/imunologia , Decídua/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Terapia de Imunossupressão/métodos , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Gravidez , Microambiente Tumoral/imunologia
20.
J Exp Clin Cancer Res ; 38(1): 464, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718684

RESUMO

BACKGROUND: Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. METHODS: The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. RESULTS: We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. CONCLUSIONS: Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible "repurposed agent' for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Assuntos
Acetilcarnitina/farmacologia , Indutores da Angiogênese/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA