RESUMO
Condition monitoring devices in hydraulic systems that use batteries or require wired infrastructure have drawbacks that affect their installation, maintenance costs, and deployment flexibility. Energy harvesting technologies can serve as an alternative power supply for system loads, eliminating batteries and wiring requirements. Despite the interest in pressure fluctuation energy harvesters, few studies consider end-to-end implementations, especially for cases with low-amplitude pressure fluctuations. This generates a research gap regarding the practical amount of energy available to the load under these conditions, as well as interface circuit requirements and techniques for efficient energy conversion. In this paper, we present a self-powered sensor that integrates an energy harvester and a wireless sensing system. The energy harvester converts pressure fluctuations in hydraulic systems into electrical energy using an acoustic resonator, a piezoelectric stack, and an interface circuit. The prototype wireless sensor consists of an industrial pressure sensor and a low-power Bluetooth System-on-chip that samples and wirelessly transmits pressure data. We present a subsystem analysis and a full system implementation that considers hydraulic systems with pressure fluctuation amplitudes of less than 1 bar and frequencies of less than 300 Hz. The study examines the frequency response of the energy harvester, the performance of the interface circuit, and the advantages of using an active power improvement unit adapted for piezoelectric stacks. We show that the interface circuit used improves the performance of the energy harvester compared to previous similar studies, showing more power generation compared to the standard interface. Experimental measurements show that the self-powered sensor system can start up by harvesting energy from pressure fluctuations with amplitudes starting at 0.2 bar at 200 Hz. It can also sample and transmit sensor data at a rate of 100 Hz at 0.7 bar at 200 Hz. The system is implemented with off-the-shelf circuits.
RESUMO
Investigating the coil-magnet structure plays a significant role in the design process of the electromagnetic energy harvester due to the effect on the harvester's performance. In this paper, the performance of four different electromagnetic vibration energy harvesters with cylindrical shapes constrained in the same volume were under investigation. The utilized structures are (i) two opposite polarized magnets spaced by a mild steel; (ii) a Halbach array with three magnets and one coil; (iii) a Halbach array with five magnets and one coil; and (iv) a Halbach array with five magnets and three coils. We utilized a completely automatic optimization procedure with the help of an optimization algorithm implemented in Python, supported by simulations in ANSYS Maxwell and MATLAB Simulink to obtain the maximum output power for each configuration. The simulation results show that the Halbach array with three magnets and one coil is the best for configurations with the Halbach array. Additionally, among all configurations, the harvester with two opposing magnets provides the highest output power and volume power density, while the Halbach array with three magnets and one coil provides the highest mass power density. The paper also demonstrates limitations of using the electromagnetic coupling coefficient as a metric for harvester optimization, if the ultimate goal is maximization of output power.
RESUMO
Low-power energy harvesting has been demonstrated as a feasible alternative for the power supply of next-generation smart sensors and IoT end devices. In many cases, the output of kinetic energy harvesters is an alternating current (AC) requiring rectification in order to supply the electronic load. The rectifier design and selection can have a considerable influence on the energy harvesting system performance in terms of extracted output power and conversion losses. This paper presents a quantitative comparison of three passive rectifiers in a low-power, low-voltage electromagnetic energy harvesting sub-system, namely the full-wave bridge rectifier (FWR), the voltage doubler (VD), and the negative voltage converter rectifier (NVC). Based on a variable reluctance energy harvesting system, we investigate each of the rectifiers with respect to their performance and their effect on the overall energy extraction. We conduct experiments under the conditions of a low-speed rotational energy harvesting application with rotational speeds of 5 rpm to 20 rpm, and verify the experiments in an end-to-end energy harvesting evaluation. Two performance metrics-power conversion efficiency (PCE) and power extraction efficiency (PEE)-are obtained from the measurements to evaluate the performance of the system implementation adopting each of the rectifiers. The results show that the FWR with PEEs of 20% at 5 rpm to 40% at 20 rpm has a low performance in comparison to the VD (40-60%) and NVC (20-70%) rectifiers. The VD-based interface circuit demonstrates the best performance under low rotational speeds, whereas the NVC outperforms the VD at higher speeds (>18 rpm). Finally, the end-to-end system evaluation is conducted with a self-powered rpm sensing system, which demonstrates an improved performance with the VD rectifier implementation reaching the system's maximum sampling rate (40 Hz) at a rotational speed of approximately 15.5 rpm.
RESUMO
The introduction of nonlinearities into energy harvesting in order to improve the performance of linear harvesters has attracted a lot of research attention recently. The potential benefits of nonlinear harvesters have been evaluated under sinusoidal or random excitation. In this paper, the performances of electromagnetic energy harvesters with linear and nonlinear springs are investigated under real vibration data. Compared to previous studies, the parameters of linear and nonlinear harvesters used in this paper are more realistic and fair for comparison since they are extracted from existing devices and restricted to similar sizes and configurations. The simulation results showed that the nonlinear harvester did not generate higher power levels than its linear counterpart regardless of the excitation category. Additionally, the effects of nonlinearities were only available under a high level of acceleration. The paper also points out some design concerns when harvesters are subjected to real vibrations.
RESUMO
With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.
RESUMO
INTRODUCTION: Sensor-based assessment of challenging behaviors in dementia may be useful to support caregivers. Here, we investigated accelerometry as tool for identification and prediction of challenging behaviors. METHODS: We set up a complex data recording study in two nursing homes with 17 persons in advanced stages of dementia. Study included four-week observation of behaviors. In parallel, subjects wore sensors 24 h/7 d. Participants underwent neuropsychological assessment including MiniMental State Examination and Cohen-Mansfield Agitation Inventory. RESULTS: We calculated the accelerometric motion score (AMS) from accelerometers. The AMS was associated with several types of agitated behaviors and could predict subject's Cohen-Mansfield Agitation Inventory values. Beyond the mechanistic association between AMS and behavior on the group level, the AMS provided an added value for prediction of behaviors on an individual level. DISCUSSION: We confirm that accelerometry can provide relevant information about challenging behaviors. We extended previous studies by differentiating various types of agitated behaviors and applying long-term measurements in a real-world setting.
Assuntos
Agressão/psicologia , Apatia , Demência , Casas de Saúde , Agitação Psicomotora/psicologia , Acelerometria/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Demência/complicações , Demência/terapia , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência/estatística & dados numéricosRESUMO
Objective: To characterize a socially active humanoid robot's therapeutic interaction as a therapeutic assistant when providing arm rehabilitation (i.e., arm basis training (ABT) for moderate-to-severe arm paresis or arm ability training (AAT) for mild arm paresis) to stroke survivors when using the digital therapeutic system Evidence-Based Robot-Assistant in Neurorehabilitation (E-BRAiN) and to compare it to human therapists' interaction. Methods: Participants and therapy: Seventeen stroke survivors receiving arm rehabilitation (i.e., ABT [n = 9] or AAT [n = 8]) using E-BRAiN over a course of nine sessions and twenty-one other stroke survivors receiving arm rehabilitation sessions (i.e., ABT [n = 6] or AAT [n = 15]) in a conventional 1:1 therapist-patient setting. Analysis of therapeutic interaction: Therapy sessions were videotaped, and all therapeutic interactions (information provision, feedback, and bond-related interaction) were documented offline both in terms of their frequency of occurrence and time used for the respective type of interaction using the instrument THER-I-ACT. Statistical analyses: The therapeutic interaction of the humanoid robot, supervising staff/therapists, and helpers on day 1 is reported as mean across subjects for each type of therapy (i.e., ABT and AAT) as descriptive statistics. Effects of time (day 1 vs. day 9) on the humanoid robot interaction were analyzed by repeated-measures analysis of variance (rmANOVA) together with the between-subject factor type of therapy (ABT vs. AAT). The between-subject effect of the agent (humanoid robot vs. human therapist; day 1) was analyzed together with the factor therapy (ABT vs. AAT) by ANOVA. Main results and interpretation: The overall pattern of the therapeutic interaction by the humanoid robot was comprehensive and varied considerably with the type of therapy (as clinically indicated and intended), largely comparable to human therapists' interaction, and adapted according to needs for interaction over time. Even substantially long robot-assisted therapy sessions seemed acceptable to stroke survivors and promoted engaged patients' training behavior. Conclusion: Humanoid robot interaction as implemented in the digital system E-BRAiN matches the human therapeutic interaction and its modification across therapies well and promotes engaged training behavior by patients. These characteristics support its clinical use as a therapeutic assistant and, hence, its application to support specific and intensive restorative training for stroke survivors.
RESUMO
BACKGROUND: Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer's disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. METHODS: We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. RESULTS: Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson's r ≈ -0.86, p < 0.001). CONCLUSION: The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodosRESUMO
BACKGROUND: Despite the enormous number of assistive technologies (ATs) in dementia care, the management of challenging behavior (CB) of persons with dementia (PwD) by informal caregivers in home care is widely disregarded. The first-line strategy to manage CB is to support the understanding of the underlying causes of CB to formulate individualized nonpharmacological interventions. App- and sensor-based approaches combining multimodal sensors (actimetry and other modalities) and caregiver information are innovative ways to support the understanding of CB for family caregivers. OBJECTIVE: The main aim of this study is to describe the design of a feasibility study consisting of an outcome and a process evaluation of a newly developed app- and sensor-based intervention to manage CB of PwD for family caregivers at home. METHODS: In this feasibility study, we perform an outcome and a process evaluation with a pre-post descriptive design over an 8-week intervention period. The Medical Research Council framework guides the design of this feasibility study. The data on 20 dyads (primary caregiver and PwD) are gathered through standardized questionnaires, protocols, and log files as well as semistructured qualitative interviews. The outcome measures (neuropsychiatric inventory and Cohen-Mansfield agitation inventory) are analyzed by using descriptive statistics and statistical tests relevant to the individual assessments (eg, chi-square test and Wilcoxon signed-rank test). For the analysis of the process data, the Unified Theory of Acceptance and Use of Technology is used. Log files are analyzed by using descriptive statistics, protocols are analyzed by using documentary analysis, and semistructured interviews are analyzed deductively using content analysis. RESULTS: The newly developed app- and sensor-based AT has been developed and was evaluated until July in 2018. The recruitment of dyads started in September 2017 and was concluded in March 2018. The data collection was completed at the end of July 2018. CONCLUSIONS: This study presents the protocol of the first feasibility study to encompass an outcome and process evaluation to assess a complex app- and sensor-based AT combining multimodal actimetry sensors for informal caregivers to manage CB. The feasibility study will provide in-depth information about the study procedure and on how to optimize the design of the intervention and its delivery. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/11630.
RESUMO
INTRODUCTION: Assessment of challenging behaviors in dementia is important for intervention selection. Here, we describe the technical and experimental setup and the feasibility of long-term multidimensional behavior assessment of people with dementia living in nursing homes. METHODS: We conducted 4 weeks of multimodal sensor assessment together with real-time observation of 17 residents with moderate to very severe dementia in two nursing care units. Nursing staff received extensive training on device handling and measurement procedures. Behavior of a subsample of eight participants was further recorded by videotaping during 4 weeks during day hours. Sensors were mounted on the participants' wrist and ankle and measured motion, rotation, as well as surrounding loudness level, light level, and air pressure. RESULTS: Participants were in moderate to severe stages of dementia. Almost 100% of participants exhibited relevant levels of challenging behaviors. Automated quality control detected 155 potential issues. But only 11% of the recordings have been influenced by noncompliance of the participants. Qualitative debriefing of staff members suggested that implementation of the technology and observation platform in the routine procedures of the nursing home units was feasible and identified a range of user- and hardware-related implementation and handling challenges. DISCUSSION: Our results indicate that high-quality behavior data from real-world environments can be made available for the development of intelligent assistive systems and that the problem of noncompliance seems to be manageable. Currently, we train machine-learning algorithms to detect episodes of challenging behaviors in the recorded sensor data.