Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(5): 2074-2088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192239

RESUMO

PURPOSE: Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling. METHODS: We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. RESULTS: Voxel values within MRF-derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor-reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. CONCLUSION: MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
2.
J Magn Reson Imaging ; 59(5): 1758-1768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37515516

RESUMO

PURPOSE: To explore whether MR fingerprinting (MRF) scans provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure (POE). STUDY TYPE: Prospective. POPULATION: 13 infants with POE (3 male; 12 newborns (age 7-65 days) and 1 infant aged 9-months). FIELD STRENGTH/SEQUENCE: 3T, 3D T1-weighted MPRAGE, 3D T2-weighted TSE and MRF sequences. ASSESSMENT: The image quality of MRF and MRI was assessed in a fully crossed, multiple-reader, multiple-case study. Sixteen image quality features in three types-image artifacts, structure and myelination visualization-were ranked by four neuroradiologists (8, 7, 5, and 8 years of experience respectively), using a 3-point scale. MRF T1 and T2 values in 8 white matter brain regions were compared between babies younger than 1 month and babies between 1 and 2 months. STATISTICAL TESTS: Generalized estimating equations model to test the significance of differences of regional T1 and T2 values of babies under 1 month and those older. MRI and MRF image quality was assessed using Gwet's second order auto-correlation coefficient (AC2) with confidence levels. The Cochran-Mantel-Haenszel test was used to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. A P value <0.05 was considered statistically significant. RESULTS: The MRF of two infants were excluded in T1 and T2 value analysis due to severe motion artifact but were included in the image quality assessment. In infants under 1 month of age (N = 6), the T1 and T2 values were significantly higher compared to those between 1 and 2 months of age (N = 4). MRF images showed significantly higher image quality ratings in all three feature types compared to MRI images. CONCLUSIONS: MR Fingerprinting scans have potential to be a motion-robust and efficient method for nonsedated infants. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Analgésicos Opioides , Processamento de Imagem Assistida por Computador , Recém-Nascido , Humanos , Masculino , Processamento de Imagem Assistida por Computador/métodos , Estudos Prospectivos , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Eur Radiol ; 33(2): 836-844, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35999374

RESUMO

OBJECTIVES: To test the feasibility of using 3D MRF maps with radiomics analysis and machine learning in the characterization of adult brain intra-axial neoplasms. METHODS: 3D MRF acquisition was performed on 78 patients with newly diagnosed brain tumors including 33 glioblastomas (grade IV), 6 grade III gliomas, 12 grade II gliomas, and 27 patients with brain metastases. Regions of enhancing tumor, non-enhancing tumor, and peritumoral edema were segmented and radiomics analysis with gray-level co-occurrence matrices and gray-level run-length matrices was performed. Statistical analysis was performed to identify features capable of differentiating tumors based on type, grade, and isocitrate dehydrogenase (IDH1) status. Receiver operating curve analysis was performed and the area under the curve (AUC) was calculated for tumor classification and grading. For gliomas, Kaplan-Meier analysis for overall survival was performed using MRF T1 features from enhancing tumor region. RESULTS: Multiple MRF T1 and T2 features from enhancing tumor region were capable of differentiating glioblastomas from brain metastases. Although no differences were identified between grade 2 and grade 3 gliomas, differentiation between grade 2 and grade 4 gliomas as well as between grade 3 and grade 4 gliomas was achieved. MRF radiomics features were also able to differentiate IDH1 mutant from the wild-type gliomas. Radiomics T1 features for enhancing tumor region in gliomas correlated to overall survival (p < 0.05). CONCLUSION: Radiomics analysis of 3D MRF maps allows differentiating glioblastomas from metastases and is capable of differentiating glioblastomas from metastases and characterizing gliomas based on grade, IDH1 status, and survival. KEY POINTS: • 3D MRF data analysis using radiomics offers novel tissue characterization of brain tumors. • 3D MRF with radiomics offers glioma characterization based on grade, IDH1 status, and overall patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Glioma/patologia , Espectroscopia de Ressonância Magnética , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores
4.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468750

RESUMO

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Mutação , Organização Mundial da Saúde
5.
Eur J Nucl Med Mol Imaging ; 48(13): 4189-4200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34037831

RESUMO

Magnetic resonance fingerprinting (MRF) is an evolving quantitative MRI framework consisting of unique data acquisition, processing, visualization, and interpretation steps. MRF is capable of simultaneously producing multiple high-resolution property maps including T1, T2, M0, ADC, and T2* measurements. While a relatively new technology, MRF has undergone rapid development for a variety of clinical applications from brain tumor characterization and epilepsy imaging to characterization of prostate cancer, cardiac imaging, among others. This paper will provide a brief overview of current state of MRF technology including highlights of technical and clinical advances. We will conclude with a brief discussion of the challenges that need to be overcome to establish MRF as a quantitative imaging biomarker.


Assuntos
Neoplasias Encefálicas , Epilepsia , Encéfalo , Técnicas de Imagem Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Imagens de Fantasmas
6.
Eur J Nucl Med Mol Imaging ; 48(3): 683-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979059

RESUMO

PURPOSE: This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS: Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS: Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION: Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
8.
Radiology ; 292(3): 685-694, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335285

RESUMO

BackgroundPreliminary studies have shown that MR fingerprinting-based relaxometry combined with apparent diffusion coefficient (ADC) mapping can be used to differentiate normal peripheral zone from prostate cancer and prostatitis. The utility of relaxometry and ADC mapping for the transition zone (TZ) is unknown.PurposeTo evaluate the utility of MR fingerprinting combined with ADC mapping for characterizing TZ lesions.Materials and MethodsTZ lesions that were suspicious for cancer in men who underwent MRI with T2-weighted imaging and ADC mapping (b values, 50-1400 sec/mm2), MR fingerprinting with steady-state free precession, and targeted biopsy (60 in-gantry and 15 cognitive targeting) between September 2014 and August 2018 in a single university hospital were retrospectively analyzed. Two radiologists blinded to Prostate Imaging Reporting and Data System (PI-RADS) scores and pathologic diagnosis drew regions of interest on cancer-suspicious lesions and contralateral visually normal TZs (NTZs) on MR fingerprinting and ADC maps. Linear mixed models compared two-reader means of T1, T2, and ADC. Generalized estimating equations logistic regression analysis was used to evaluate both MR fingerprinting and ADC in differentiating NTZ, cancers and noncancers, clinically significant (Gleason score ≥ 7) cancers from clinically insignificant lesions (noncancers and Gleason 6 cancers), and characterizing PI-RADS version 2 category 3 lesions.ResultsIn 67 men (mean age, 66 years ± 8 [standard deviation]) with 75 lesions, targeted biopsy revealed 37 cancers (six PI-RADS category 3 cancers and 31 PI-RADS category 4 or 5 cancers) and 38 noncancers (31 PI-RADS category 3 lesions and seven PI-RADS category 4 or 5 lesions). The T1, T2, and ADC of NTZ (1800 msec ± 150, 65 msec ± 22, and [1.13 ± 0.19] × 10-3 mm2/sec, respectively) were higher than those in cancers (1450 msec ± 110, 36 msec ± 11, and [0.57 ± 0.13] × 10-3 mm2/sec, respectively; P < .001 for all). The T1, T2, and ADC in cancers were lower than those in noncancers (1620 msec ± 120, 47 msec ± 16, and [0.82 ± 0.13] × 10-3 mm2/sec, respectively; P = .001 for T1 and ADC and P = .03 for T2). The area under the receiver operating characteristic curve (AUC) for T1 plus ADC was 0.94 for separation. T1 and ADC in clinically significant cancers (1440 msec ± 140 and [0.58 ± 0.14] × 10-3 mm2/sec, respectively) were lower than those in clinically insignificant lesions (1580 msec ± 120 and [0.75 ± 0.17] × 10-3 mm2/sec, respectively; P = .001 for all). The AUC for T1 plus ADC was 0.81 for separation. Within PI-RADS category 3 lesions, T1 and ADC of cancers (1430 msec ± 220 and [0.60 ± 0.17] × 10-3 mm2/sec, respectively) were lower than those of noncancers (1630 msec ± 120 and [0.81 ± 0.13] × 10-3 mm2/sec, respectively; P = .006 for T1 and P = .004 for ADC). The AUC for T1 was 0.79 for differentiating category 3 lesions.ConclusionMR fingerprinting-based relaxometry combined with apparent diffusion coefficient mapping may improve transition zone lesion characterization.© RSNA, 2019Online supplemental material is available for this article.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Prostatite/diagnóstico por imagem , Idoso , Diagnóstico Diferencial , Humanos , Masculino , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
NMR Biomed ; 32(5): e4082, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30821878

RESUMO

Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that maps multiple tissue properties through pseudorandom signal excitation and dictionary-based reconstruction. The aim of this study is to estimate and validate partial volumes from MRF signal evolutions (PV-MRF), and to characterize possible sources of error. Partial volume model inversion (pseudoinverse) and dictionary-matching approaches to calculate brain tissue fractions (cerebrospinal fluid, gray matter, white matter) were compared in a numerical phantom and seven healthy subjects scanned at 3 T. Results were validated by comparison with ground truth in simulations and ROI analysis in vivo. Simulations investigated tissue fraction errors arising from noise, undersampling artifacts, and model errors. An expanded partial volume model was investigated in a brain tumor patient. PV-MRF with dictionary matching is robust to noise, and estimated tissue fractions are sensitive to model errors. A 6% error in pure tissue T1 resulted in average absolute tissue fraction error of 4% or less. A partial volume model within these accuracy limits could be semi-automatically constructed in vivo using k-means clustering of MRF-mapped relaxation times. Dictionary-based PV-MRF robustly identifies pure white matter, gray matter and cerebrospinal fluid, and partial volumes in subcortical structures. PV-MRF could also estimate partial volumes of solid tumor and peritumoral edema. We conclude that PV-MRF can attribute subtle changes in relaxation times to altered tissue composition, allowing for quantification of specific tissues which occupy a fraction of a voxel.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
10.
Pediatr Neurosurg ; 54(5): 310-318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416081

RESUMO

OBJECT: Magnetic resonance fingerprinting (MRF) allows rapid, simultaneous mapping of T1 and T2 relaxation times and may be an important diagnostic tool to measure tissue characteristics in pediatric brain tumors. We examined children and young adults with primary brain tumors to determine whether MRF can discriminate tumor from normal-appearing white matter and distinguish tumor grade. METHODS: MRF was performed in 23 patients (14 children and 9 young adults) with brain tumors (19 low-grade glioma, 4 high-grade tumors). T1 and T2 values were recorded in regions of solid tumor (ST), peritumoral white matter (PWM), and contralateral white matter (CWM). Nonparametric tests were used for comparison between groups and regions. RESULTS: Median scan time for MRF and a sequence for tumor localization was 11 min. MRF-derived T1 and T2 values distinguished ST from CWM (T1: 1,444 ± 254 ms vs. 938 ± 96 ms, p = 0.0002; T2: 61 ± 22 ms vs. 38 ± 9 ms, p = 0.0003) and separated high-grade tumors from low-grade tumors (T1: 1,863 ± 70 ms vs. 1,355 ± 187 ms, p = 0.007; T2: 90 ± 13 ms vs. 56 ± 19 ms, p = 0.013). PWM was distinct from CWM (T1: 1,261 ± 359 ms vs. 933 ± 104 ms, p = 0.0008; T2: 65 ± 51 ms vs. 38 ± 8 ms, p = 0.008), as well as from tumor (T1: 1,261 ± 371 ms vs. 1,462 ± 248 ms, p = 0.047). CONCLUSIONS: MRF is a fast sequence that can rapidly distinguish important tissue components in pediatric brain tumor patients. MRF-derived T1 and T2 distinguished tumor from normal-appearing white matter, differentiated tumor grade, and found abnormalities in peritumoral regions. MRF may be useful for rapid quantitative measurement of tissue characteristics and distinguish tumor grade in children and young adults with brain tumors.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Gradação de Tumores/métodos , Estudos Prospectivos , Adulto Jovem
11.
Magn Reson Med ; 80(1): 159-170, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29159935

RESUMO

PURPOSE: To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. THEORY: Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. METHODS: An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. RESULTS: Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. CONCLUSIONS: The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Teorema de Bayes , Simulação por Computador , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem , Distribuição Normal , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas
12.
Radiology ; 283(3): 729-738, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28187264

RESUMO

Purpose To develop and evaluate an examination consisting of magnetic resonance (MR) fingerprinting-based T1, T2, and standard apparent diffusion coefficient (ADC) mapping for multiparametric characterization of prostate disease. Materials and Methods This institutional review board-approved, HIPAA-compliant retrospective study of prospectively collected data included 140 patients suspected of having prostate cancer. T1 and T2 mapping was performed with fast imaging with steady-state precession-based MR fingerprinting with ADC mapping. Regions of interest were drawn by two independent readers in peripheral zone lesions and normal-appearing peripheral zone (NPZ) tissue identified on clinical images. T1, T2, and ADC were recorded for each region. Histopathologic correlation was based on systematic transrectal biopsy or cognitively targeted biopsy results, if available. Generalized estimating equations logistic regression was used to assess T1, T2, and ADC in the differentiation of (a) cancer versus NPZ, (b) cancer versus prostatitis, (c) prostatitis versus NPZ, and (d) high- or intermediate-grade tumors versus low-grade tumors. Analysis was performed for all lesions and repeated in a targeted biopsy subset. Discriminating ability was evaluated by using the area under the receiver operating characteristic curve (AUC). Results In this study, 109 lesions were analyzed, including 39 with cognitively targeted sampling. T1, T2, and ADC from cancer (mean, 1628 msec ± 344, 73 msec ± 27, and 0.773 × 10-3 mm2/sec ± 0.331, respectively) were significantly lower than those from NPZ (mean, 2247 msec ± 450, 169 msec ± 61, and 1.711 × 10-3 mm2/sec ± 0.269) (P < .0001 for each) and together produced the best separation between these groups (AUC = 0.99). ADC and T2 together produced the highest AUC of 0.83 for separating high- or intermediate-grade tumors from low-grade cancers. T1, T2, and ADC in prostatitis (mean, 1707 msec ± 377, 79 msec ± 37, and 0.911 × 10-3 mm2/sec ± 0.239) were significantly lower than those in NPZ (P < .0005 for each). Interreader agreement was excellent, with an intraclass correlation coefficient greater than 0.75 for both T1 and T2 measurements. Conclusion This study describes the development of a rapid MR fingerprinting- and diffusion-based examination for quantitative characterization of prostatic tissue. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Prostatite/diagnóstico por imagem , Adulto , Idoso , Biópsia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Prostatite/patologia , Estudos Retrospectivos
13.
Magn Reson Med ; 75(6): 2481-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26132462

RESUMO

PURPOSE: To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. METHODS: An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. RESULTS: The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. CONCLUSION: The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
14.
Magn Reson Med ; 75(4): 1457-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25980949

RESUMO

PURPOSE: To develop an ultrafast T1 mapping method for high-resolution, volumetric T1 measurements in the abdomen. METHODS: The Look-Locker method was combined with a stack-of-spirals acquisition accelerated using three-dimensional (3D) through-time spiral GRAPPA reconstruction for fast data acquisition. A segmented k-space acquisition scheme was proposed and the time delay between segments for the recovery of longitudinal magnetization was optimized using Bloch equation simulations. The accuracy of this method was validated in a phantom experiment and in vivo T1 measurements were performed with 35 asymptomatic subjects on both 1.5 Tesla (T) and 3T MRI systems. RESULTS: Phantom experiments yielded close agreement between the proposed method and gold standard measurements for a large range of T1 values (200 to 1600 ms). The in vivo results further demonstrate that high-resolution T1 maps (2 × 2 × 4 mm(3)) for 32 slices can be achieved in a single clinically feasible breath-hold of approximately 20 s. The T1 values for multiple organs and tissues in the abdomen are in agreement with the published literature. CONCLUSION: A high-resolution 3D abdominal T1 mapping technique was developed, which allows fast and accurate T1 mapping of multiple abdominal organs and tissues in a single breath-hold.


Assuntos
Abdome/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Imagens de Fantasmas , Adulto Jovem
15.
Invest Radiol ; 59(5): 359-371, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812483

RESUMO

OBJECTIVE: Given the limited repeatability and reproducibility of radiomic features derived from weighted magnetic resonance imaging (MRI), there may be significant advantages to using radiomics in conjunction with quantitative MRI. This study introduces a novel physics-informed discretization (PID) method for reproducible radiomic feature extraction and evaluates its performance using quantitative MRI sequences including magnetic resonance fingerprinting (MRF) and apparent diffusion coefficient (ADC) mapping. MATERIALS AND METHODS: A multiscanner, scan-rescan dataset comprising whole-brain 3D quantitative (MRF T1, MRF T2, and ADC) and weighted MRI (T1w MPRAGE, T2w SPACE, and T2w FLAIR) from 5 healthy subjects was prospectively acquired. Subjects underwent 2 repeated acquisitions on 3 distinct 3 T scanners each, for a total of 6 scans per subject (30 total scans). First-order statistical (n = 23) and second-order texture (n = 74) radiomic features were extracted from 56 brain tissue regions of interest using the proposed PID method (for quantitative MRI) and conventional fixed bin number (FBN) discretization (for quantitative MRI and weighted MRI). Interscanner radiomic feature reproducibility was measured using the intraclass correlation coefficient (ICC), and the effect of image sequence (eg, MRF T1 vs T1w MPRAGE), as well as image discretization method (ie, PID vs FBN), on radiomic feature reproducibility was assessed using repeated measures analysis of variance. The robustness of PID and FBN discretization to segmentation error was evaluated by simulating segmentation differences in brainstem regions of interest. Radiomic features with ICCs greater than 0.75 following simulated segmentation were determined to be robust to segmentation. RESULTS: First-order features demonstrated higher reproducibility in quantitative MRI than weighted MRI sequences, with 30% (n = 7/23) features being more reproducible in MRF T1 and MRF T2 than weighted MRI. Gray level co-occurrence matrix (GLCM) texture features extracted from MRF T1 and MRF T2 were significantly more reproducible using PID compared with FBN discretization; for all quantitative MRI sequences, PID yielded the highest number of texture features with excellent reproducibility (ICC > 0.9). Comparing texture reproducibility of quantitative and weighted MRI, a greater proportion of MRF T1 (n = 225/370, 61%) and MRF T2 (n = 150/370, 41%) texture features had excellent reproducibility (ICC > 0.9) compared with T1w MPRAGE (n = 148/370, 40%), ADC (n = 115/370, 32%), T2w SPACE (n = 98/370, 27%), and FLAIR (n = 102/370, 28%). Physics-informed discretization was also more robust than FBN discretization to segmentation error, as 46% (n = 103/222, 46%) of texture features extracted from quantitative MRI using PID were robust to simulated 6 mm segmentation shift compared with 19% (n = 42/222, 19%) of weighted MRI texture features extracted using FBN discretization. CONCLUSIONS: The proposed PID method yields radiomic features extracted from quantitative MRI sequences that are more reproducible and robust than radiomic features extracted from weighted MRI using conventional (FBN) discretization approaches. Quantitative MRI sequences also demonstrated greater scan-rescan robustness and first-order feature reproducibility than weighted MRI.


Assuntos
Imageamento por Ressonância Magnética , Radiômica , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38684319

RESUMO

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

17.
Pediatr Radiol ; 43(6): 728-42; quiz 725-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23636536

RESUMO

Craniosynostosis is encountered in the pediatric population in isolated or syndromic forms. The resulting deformity depends on the number and type of sutures involved and, in multi-sutural synostosis, the order of suture fusion. Primary craniosynostosis needs to be differentiated from the secondary variety and positional or deformational mimics. Syndromic craniosynostoses are associated with other craniofacial deformities. Evaluation with 3-D CT plays an important role in accurate diagnosis and management; however, implementation of appropriate CT techniques is essential to limit the radiation burden in these children. In this article, the authors briefly review the classification, embryopathogenesis and epidemiology and describe in detail the radiologic appearance and differential diagnoses of craniosynostosis.


Assuntos
Craniossinostoses/diagnóstico por imagem , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Crânio/anormalidades , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
18.
ArXiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37426455

RESUMO

BACKGROUND: A noninvasive and sensitive imaging tool is needed to assess the fast-evolving baby brain. However, using MRI to study non-sedated babies faces roadblocks, including high scan failure rates due to subjects motion and the lack of quantitative measures for assessing potential developmental delays. This feasibility study explores whether MR Fingerprinting scans can provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure, presenting a viable alternative to clinical MR scans. ASSESSMENT: MRF image quality was compared to pediatric MRI scans using a fully crossed, multiple reader multiple case study. The quantitative T1 and T2 values were used to assess brain tissue changes between babies younger than one month and babies between one and two months. STATISTICAL TESTS: Generalized estimating equations (GEE) model was performed to test the significant difference of the T1 and T2 values from eight white matter regions of babies under one month and those are older. MRI and MRF image quality were assessed using Gwets second order auto-correlation coefficient (AC2) with its confidence levels. We used the Cochran-Mantel-Haenszel test to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. RESULTS: In infants under one month of age, the T1 and T2 values are significantly higher (p<0.005) compared to those between one and two months. A multiple-reader and multiple-case study showed superior image quality ratings in anatomical features from the MRF images than the MRI images. CONCLUSIONS: This study suggested that the MR Fingerprinting scans offer a motion-robust and efficient method for non-sedated infants, delivering superior image quality than clinical MRI scans and additionally providing quantitative measures to assess brain development.

19.
Pediatr Radiol ; 42(5): 606-19, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22249600

RESUMO

We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested.


Assuntos
Diagnóstico por Imagem , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/fisiopatologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Diagnóstico Diferencial , Humanos , Recém-Nascido , Recém-Nascido Prematuro
20.
Pediatr Radiol ; 41(10): 1308-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21594543

RESUMO

We present a pictorial review of MRI features of various closed spinal dysraphisms based on previously described clinicoradiological classification of spinal dysraphisms proposed. The defining imaging features of each dysraphism type are highlighted and a diagnostic algorithm for closed spinal dysraphisms is suggested.


Assuntos
Imageamento por Ressonância Magnética/métodos , Disrafismo Espinal/diagnóstico , Algoritmos , Diagnóstico Diferencial , Humanos , Disrafismo Espinal/classificação , Disrafismo Espinal/embriologia , Disrafismo Espinal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA