Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Angew Chem Int Ed Engl ; 63(23): e202402509, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38588046

RESUMO

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.


Assuntos
Antibacterianos , Membranas Artificiais , Nylons , Antibacterianos/química , Antibacterianos/isolamento & purificação , Nylons/química , Purificação da Água/métodos , Filtração/métodos , Permeabilidade
2.
Value Health ; 24(8): 1102-1110, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34372975

RESUMO

OBJECTIVES: Nonattendance of appointments in outpatient clinics results in many adverse effects including inefficient use of valuable resources, wasted capacity, increased delays, and gaps in patient care. This research presents a modeling framework for designing positive incentives aimed at decreasing patient nonattendance. METHODS: We develop a partially observable Markov decision process (POMDP) model to identify optimal adaptive reinforcement schedules with which financial incentives are disbursed. The POMDP model is conceptually motivated based on contingency management evidence and practices. We compare the expected net profit and trade-offs for a clinic using data from the literature for a base case and the optimal positive incentive design resulting from the POMDP model. To accommodate a less technical audience, we summarize guidelines for reinforcement schedules from a simplified Markov decision process model. RESULTS: The results of the POMDP model show that a clinic can increase its net profit per recurrent patient while simultaneously increasing patient attendance. An increase in net profit of 6.10% was observed compared with a policy with no positive incentive implemented. Underlying this net profit increase is a favorable trade-off for a clinic in investing in a targeted contingency management-based positive incentive structure and an increase in patient attendance rates. CONCLUSIONS: Through a strategic positive incentive design, the POMDP model results show that principles from contingency management can support decreasing nonattendance rates and improving outpatient clinic efficiency of its appointment capacity, and improved clinic efficiency can offset the costs of contingency management.


Assuntos
Agendamento de Consultas , Modelos Estatísticos , Motivação , Pacientes não Comparecentes/estatística & dados numéricos , Instituições de Assistência Ambulatorial , Humanos , Fatores de Tempo
3.
ScientificWorldJournal ; 2014: 278968, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737964

RESUMO

A fluorescence telescope tower array has been designed to measure cosmic rays in the energy range of 10(17)-10(18) eV. A full Monte Carlo simulation, including air shower production, light generation and propagation, detector response, electronics, and trigger system, has been developed for that purpose. Using such a simulation tool, the detector configuration, which includes one main tower array and two side-trigger arrays, 24 telescopes in total, has been optimized. The aperture and the event rate have been estimated. Furthermore, the performance of the X max technique in measuring composition has also been studied.


Assuntos
Desenho Assistido por Computador , Radiação Cósmica , Modelos Teóricos , Monitoramento de Radiação/instrumentação , Espectrometria de Fluorescência/instrumentação , Telescópios , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação
4.
ACS Omega ; 9(1): 393-400, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222625

RESUMO

Coal gangue has dual attributes of waste residue and resources. Clarifying the release characteristics of harmful trace elements from the coal gangue can provide a theoretical basis for environmental impact and resource utilization. In this study, the characteristics of harmful trace elements released from coal gangue in Xinjiang during dynamic leaching and static immersion experiments were determined using proximate analysis, X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), and inductively coupled plasma mass spectrometry (ICP-MS). The results show that (1) the higher the content of harmful trace elements in coal gangue and the greater the concentration coefficient (CC), the greater the release of elements in dynamic leaching and static immersion experiments. The mode of occurrence of trace elements in the coal gangue determines their transport and release. Elements are associated not only with moisture but also with minerals, such as clays, sulfides, and carbonates, which are readily soluble in water. (2) The release of harmful trace elements was inversely proportional to time in the dynamic leaching experiments, and the main reason for the reduction in element release during the late leaching period was the adsorption effect of clay minerals. In the dynamic leaching experiment, harmful trace elements in the surrounding environment continued to accumulate, and static immersion experiments in water showed that harmful trace elements gradually reached dynamic equilibrium. The concentration of most elements in the late stage of the static immersion experiment was lower than that in the early stage, indicating that the environmental hazards of dynamic leaching were greater than those of the static immersion of coal gangue in Xinjiang.

5.
Sci Adv ; 10(26): eadn3289, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924410

RESUMO

This study leverages the ancient craft of weaving to prepare membranes that can effectively treat oil/water mixtures, specifically challenging nanoemulsions. Drawing inspiration from the core-shell architecture of spider silk, we have engineered fibers, the fundamental building blocks for weaving membranes, that feature a mechanically robust core for tight weaving, coupled with a CO2-responsive shell that allows for on-demand wettability adjustments. Tightly weaving these fibers produces membranes with ideal pores, achieving over 99.6% separation efficiency for nanoemulsions with droplets as small as 20 nm. They offer high flux rates, on-demand self-cleaning, and can switch between sieving oil and water nanodroplets through simple CO2/N2 stimulation. Moreover, weaving can produce sufficiently large membranes (4800 cm2) to assemble a module that exhibits long-term stability and performance, surpassing state-of-the-art technologies for nanoemulsion separations, thus making industrial application a practical reality.

6.
Adv Mater ; 36(19): e2311013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341656

RESUMO

Stimulus-responsive membranes demonstrate promising applications in switchable oil/water emulsion separations. However, they are unsuitable for the treatment of double emulsions like oil-in-water-in-oil (O/W/O) and water-in-oil-in-water (W/O/W) emulsions. For efficient separation of these complicated emulsions, fine control over the wettability, response time, and aperture structure of the membrane is required. Herein, dual-coated fibers consisting of primary photothermal-responsive and secondary CO2-responsive coatings are prepared by two steps. Automated weaving of these fibers produces membranes with photothermal- and CO2-responsive characteristics and narrow pore size distributions. These membranes exhibit fast switching wettability between superhydrophilicity (under CO2 stimulation) and high hydrophobicity (under near-infrared stimulation), achieving on-demand separation of various O/W/O and W/O/W emulsions with separation efficiencies exceeding 99.6%. Two-dimensional low-field nuclear magnetic resonance and correlated spectra technique are used to clarify the underlying mechanism of switchable double emulsion separation. The approach can effectively address the challenges associated with the use of stimulus-responsive membranes for double emulsion separation and facilitate the industrial application of these membranes.

7.
Chem Commun (Camb) ; 59(30): 4535-4538, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975727

RESUMO

M-NC catalysts were prepared by a combination of the electrospinning method and thermal treatment. For the first time, the contribution of N-species to the ORR (oxygen reduction reaction) of the M-NC was analysed using XPS (X-ray photoelectron spectroscopy). The obtained relations were verified by VASP (Vienna Ab-initio Simulation Package).

8.
Nat Commun ; 14(1): 1108, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849553

RESUMO

Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.

9.
Sci Adv ; 9(18): eadg6134, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146143

RESUMO

The successful implementation of thin-film composite membranes (TFCM) for challenging solute-solute separations in the pharmaceutical industry requires a fine control over the microstructure (size, distribution, and connectivity of the free-volume elements) and thickness of the selective layer. For example, desalinating antibiotic streams requires highly interconnected free-volume elements of the right size to block antibiotics but allow the passage of salt ions and water. Here, we introduce stevioside, a plant-derived contorted glycoside, as a promising aqueous phase monomer for optimizing the microstructure of TFCM made via interfacial polymerization. The low diffusion rate and moderate reactivity of stevioside, together with its nonplanar and distorted conformation, produced thin selective layers with an ideal microporosity for antibiotic desalination. For example, an optimized 18-nm membrane exhibited an unprecedented combination of high water permeance (81.2 liter m-2 hour-1 bar-1), antibiotic desalination efficiency (NaCl/tetracycline separation factor of 11.4), antifouling performance, and chlorine resistance.


Assuntos
Antibacterianos , Tetraciclina , Cloretos , Extratos Vegetais , Poliésteres
10.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234606

RESUMO

Carbon nanotubes (CNTs) with superior mechanical properties are expected to play a role in the next generation of critical engineering mechanical materials. Crucial advances have been made in CNTs, as it has been reported that the tensile strength of defect-free CNTs and carbon nanotube bundles can approach the theoretical limit. However, the tensile strength of macro carbon nanotube fibers (CNTFs) is far lower than the theoretical level. Although some reviews have summarized the development of such fiber materials, few of them have focused on the controllable preparation and performance optimization of high-strength CNTFs at different scales. Therefore, in this review, we will analyze the characteristics and latest challenges of multiscale CNTFs in preparation and strength optimization. First, the structure and preparation of CNTs are introduced. Then, the preparation methods and tensile strength characteristics of CNTFs at different scales are discussed. Based on the analysis of tensile fracture, we summarize some typical strategies for optimizing tensile performance around defect and tube-tube interaction control. Finally, we introduce some emerging applications for CNTFs in mechanics. This review aims to provide insights and prospects for the controllable preparation of CNTFs with ultra-high tensile strength for emerging cutting-edge applications.

11.
Adv Sci (Weinh) ; 8(7): 2003078, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854884

RESUMO

Extraordinary properties and great application potentials of carbon nanotubes (CNT) and graphene fundamentally rely on their large-scale perfect sp2 structure. Particularly for high-end applications, ultralow defect density and ultrahigh selectivity are prerequisites, for which metal-catalyzed chemical vapor deposition (CVD) is the most promising approach. Due to their structure and peculiarity, CNTs and graphene can themselves provide growth templates and nonlocal dual conductance, serving as template autocatalysts with tunable bandgap during the CVD. However, current growth kinetics models all focus on the external factors and edges. Here, the growth kinetics of sp2 nanocarbons is elaborated from the perspective of template autocatalysis and holistic electronic structure. After reviewing current growth kinetics, various representative works involving CVD growth of different sp2 nanocarbons are analyzed, to reveal their bandgap-coupled kinetics and resulting selective synthesis. Recent progress is then reviewed, which has demonstrated the interlocking between the atomic assembly rate and bandgap of CNTs, with an explicit volcano dependence whose peak would be determined by the environment. In addition, the topological protection for perfect sp2 structure and the defect-induced perturbation for the interlocking are discussed. Finally, the prospects for the kinetic selective growth of perfect nanocarbons are proposed.

12.
RSC Adv ; 11(43): 26502-26508, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479987

RESUMO

Precious metal nanometric catalysts are widely used in the removal of harmful substances. In the process of synthesis and catalytic reaction, it is particularly important to study green and simple synthesis methods and high catalytic efficiency. In this paper, a green one-step method was used to synthesize the Fe(OH)3/Fe2O3@Au composite catalyst, in which Au was single atom-dispersed. The removal of 4-nitrophenol (4-NP), a typical dangerous chemical widely existing in factory waste gas, waste water and automobile exhaust gas, was catalysed by Fe(OH)3/Fe2O3@Au. The catalytic performance of Fe(OH)3/Fe2O3@Au with different synthesis conditions (different amounts of MES, NaBH4, FeSO4, Au and Pt) on the 4-NP reduction reaction were systematically studied. Finally, the stability and recyclability of Fe(OH)3/Fe2O3@Au composite nanocatalyst were investigated thoroughly.

13.
Science ; 369(6507): 1104-1106, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855336

RESUMO

Fatigue resistance is a key property of the service lifetime of structural materials. Carbon nanotubes (CNTs) are one of the strongest materials ever discovered, but measuring their fatigue resistance is a challenge because of their size and the lack of effective measurement methods for such small samples. We developed a noncontact acoustic resonance test system for investigating the fatigue behavior of centimeter-long individual CNTs. We found that CNTs have excellent fatigue resistance, which is dependent on temperature, and that the time to fatigue fracture of CNTs is dominated by the time to creation of the first defect.

14.
Adv Mater ; 32(26): e2001741, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449260

RESUMO

Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm-2 . Li anodes paired with lithium cobalt oxide (LiCoO2 ) and lithium nickel cobalt manganese oxide (LiNi0.8 Co0.1 Mn0.1 O2 , NCM 811) cathodes exhibit 99.6-99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g-1 and ≈765 Wh kg-1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li-NMC 811 full batteries.

15.
Adv Mater ; 31(9): e1800680, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30357976

RESUMO

Energy storage in a proper form is an important way to meet the fast increase in the demand for energy. Among the strategies for storing energy, storage of mechanical energy via suitable media is widely utilized by human beings. With a tensile strength over 100 GPa, and a Young's modulus over 1 TPa, carbon nanotubes (CNTs) are considered as one of the strongest materials ever found and exhibit overwhelming advantages for storing mechanical energy. For example, the tensile-strain energy density of CNTs is as high as 1125 Wh kg-1 . In addition, CNTs also exhibit great potential for fabricating flywheels to store kinetic energy with both high energy density (8571 Wh kg-1 ) and high power density (2 MW kg-1 to 2 GW kg-1 ). Here, an overview of some typical mechanical-energy-storage systems and materials is given. Then, theoretical and experimental studies on the mechanical properties of CNTs and CNT assemblies are introduced. Afterward, the strategies for utilizing CNTs to store mechanical energy are discussed. In addition, macroscale production of CNTs is summarized. Finally, future trends and prospects in the development of CNTs used as mechanical-energy-storage materials are presented.

16.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271506

RESUMO

Because of the outstanding mechanical and electrical properties of carbon nanotubes (CNTs), a CNT-based torsion pendulum is demonstrated to show great potential in nano-electromechanical systems. It is also expected to achieve various manipulations for further characterization and increase device sensitivity using ultrlong CNTs and macroscale moving parts. However, the reported top-down method limits the CNT performance and device size by introducing inevitable contamination and destruction, which greatly hinders the development of single-molecule devices. Here, a bottom-up method is introduced to fabricate heterostructures of anthracene flakes (AFs) and suspended CNTs, providing a nondamaging CNT mechanical measurement before further applications, especially for the twisting behavior, and providing a controllable and clean transfer method to fabricate CNT-based electrical devices under ambient conditions. Based on the unique geometry of CNT/AF heterostructures, various complex manipulations of single-CNT devices are conducted to investigate CNT mechanical properties and prompt novel applications of similar structures in nanotechnology. The AF-decorated CNTs show high Young's modulus (≈1 TPa) and tensile strength (≈100 GPa), and can be considered as the finest and strongest torsional springs. CNT-based torsion balance enables to measure fN-level forces and the torsional spring constant is two orders of magnitude lower than previously reported values.

17.
Adv Mater ; 30(44): e1803368, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30216568

RESUMO

Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO3 to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures.

18.
Sci Rep ; 8(1): 10884, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022073

RESUMO

As an excellent model organism, zebrafish have been widely applied in many fields. The accurate identification and tracking of individuals are crucial for zebrafish shoaling behaviour analysis. However, multi-zebrafish tracking still faces many challenges. It is difficult to keep identified for a long time due to fish overlapping caused by the crossings. Here we proposed an improved Histogram of Oriented Gradient (HOG) algorithm to calculate the stable back texture feature map of zebrafish, then tracked multi-zebrafish in a fully automated fashion with low sample size, high tracking accuracy and wide applicability. The performance of the tracking algorithm was evaluated in 11 videos with different numbers and different sizes of zebrafish. In the Right-tailed hypothesis test of Wilcoxon, our method performed better than idTracker, with significant higher tracking accuracy. Throughout the video of 16 zebrafish, the training sample of each fish had only 200-500 image samples, one-fifth of the idTracker's sample size. Furthermore, we applied the tracking algorithm to analyse the depression and hypoactivity behaviour of zebrafish shoaling. We achieved correct identification of depressed zebrafish among the fish shoal based on the accurate tracking results that could not be identified by a human.


Assuntos
Algoritmos , Comportamento Animal/fisiologia , Orientação Espacial/fisiologia , Comportamento Espacial/fisiologia , Peixe-Zebra/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Comportamento de Massa , Gravação em Vídeo
19.
Nat Nanotechnol ; 13(7): 589-595, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760522

RESUMO

Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.

20.
ACS Appl Mater Interfaces ; 9(12): 11082-11094, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28244726

RESUMO

Graphene oxide quantum dots (GOQDs), novel carbon-based nanomaterials, have attracted tremendous research interest due to their unique properties associated with both graphene and quantum dots. In the present study, thin film nanocomposite (TFN) membranes comprising GOQDs dispersed within a tannic acid (TA) film were fabricated by an interfacial polymerization reaction for low-pressure nanofiltration (NF). The resultant TA/GOQDs TFN membranes had measurably smoother and more hydrophilic, negatively charged surfaces compared to the similarly formed TA thin film composite (TFC) membrane. Owing to the loose active layer structure and the combination of Donnan exclusion and steric hindrance, the TA/GOQDs TFN membrane showed a pure water flux up to 23.33 L/m2·h (0.2 MPa), which was 1.5 times more than that of pristine TA TFC membrane, while high dye rejection to Congo red (99.8%) and methylene blue (97.6%) was kept. In addition, the TA/GOQDs TFN membrane presented better antifouling properties, which was ascribed to the favorable changes in membrane hydrophilicity, ζ-potential, and surface roughness. These results indicated the great potential of such membranes in wastewater treatment, separation, and purification in many industrial fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA