Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39000846

RESUMO

Global Positioning Systems (GPSs) can collect tracking data to remotely monitor livestock well-being and pasture use. Supervised machine learning requires behavioral observations of monitored animals to identify changes in behavior, which is labor-intensive. Our goal was to identify animal behaviors automatically without using human observations. We designed a novel framework using unsupervised learning techniques. The framework contains two steps. The first step segments cattle tracking data using state-of-the-art time series segmentation algorithms, and the second step groups segments into clusters and then labels the clusters. To evaluate the applicability of our proposed framework, we utilized GPS tracking data collected from five cows in a 1096 ha rangeland pasture. Cow movement pathways were grouped into six behavior clusters based on velocity (m/min) and distance from water. Again, using velocity, these six clusters were classified into walking, grazing, and resting behaviors. The mean velocity for predicted walking and grazing and resting behavior was 44, 13 and 2 min/min, respectively, which is similar to other research. Predicted diurnal behavior patterns showed two primary grazing bouts during early morning and evening, like in other studies. Our study demonstrates that the proposed two-step framework can use unlabeled GPS tracking data to predict cattle behavior without human observations.


Assuntos
Algoritmos , Comportamento Animal , Sistemas de Informação Geográfica , Aprendizado de Máquina não Supervisionado , Bovinos , Animais , Comportamento Animal/fisiologia , Feminino
2.
Anal Chem ; 93(28): 9817-9825, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34213903

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) has gained popularity in the proteomics field for its capability to improve mass spectrometry sensitivity and to decrease peptide co-fragmentation. The recent implementation of FAIMS on Tribrid Orbitrap instruments enhanced proteome coverage and increased the precision of quantitative measurements. However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. Proteomic experiments performed on HeLa tryptic digests with the modified mass spectrometer improved signal to noise and reduced interfering ions, resulting in an increase of 42% in peptide identification. FAIMS was also combined with segmented ion fractionation where 100 m/z windows were obtained in turn to further increase the depth of proteome analysis by reducing the proportion of chimeric MS/MS spectra from 50 to 27%. We also demonstrate the application of FAIMS to improve quantitative measurements when using isobaric peptide labeling. FAIMS experiments performed on a two-proteome model revealed that FAIMS Pro provided a 65% improvement in quantification accuracy compared to conventional LC-MS/MS experiments.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Espectrometria de Mobilidade Iônica , Íons
3.
Mol Cell ; 49(1): 186-99, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23201123

RESUMO

Calorie restriction (CR) extends life span in diverse species. Mitochondria play a key role in CR adaptation; however, the molecular details remain elusive. We developed and applied a quantitative mass spectrometry method to probe the liver mitochondrial acetyl-proteome during CR versus control diet in mice that were wild-type or lacked the protein deacetylase SIRT3. Quantification of 3,285 acetylation sites-2,193 from mitochondrial proteins-rendered a comprehensive atlas of the acetyl-proteome and enabled global site-specific, relative acetyl occupancy measurements between all four experimental conditions. Bioinformatic and biochemical analyses provided additional support for the effects of specific acetylation on mitochondrial protein function. Our results (1) reveal widespread reprogramming of mitochondrial protein acetylation in response to CR and SIRT3, (2) identify three biochemically distinct classes of acetylation sites, and (3) provide evidence that SIRT3 is a prominent regulator in CR adaptation by coordinately deacetylating proteins involved in diverse pathways of metabolism and mitochondrial maintenance.


Assuntos
Restrição Calórica , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Sirtuína 3/fisiologia , Acetilcoenzima A/metabolismo , Acetilação , Adaptação Fisiológica , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Células Cultivadas , Cromatografia por Troca Iônica , Análise por Conglomerados , Sequência Consenso , Expressão Gênica , Genes Mitocondriais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/isolamento & purificação , Sirtuína 3/química , Sirtuína 3/isolamento & purificação , Sirtuína 3/metabolismo , Coloração e Rotulagem , Espectrometria de Massas em Tandem
4.
J Proteome Res ; 19(5): 2026-2034, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126768

RESUMO

Multiplexed quantitative analyses of complex proteomes enable deep biological insight. While a multitude of workflows have been developed for multiplexed analyses, the most quantitatively accurate method (SPS-MS3) suffers from long acquisition duty cycles. We built a new, real-time database search (RTS) platform, Orbiter, to combat the SPS-MS3 method's longer duty cycles. RTS with Orbiter eliminates SPS-MS3 scans if no peptide matches to a given spectrum. With Orbiter's online proteomic analytical pipeline, which includes RTS and false discovery rate analysis, it was possible to process a single spectrum database search in less than 10 ms. The result is a fast, functional means to identify peptide spectral matches using Comet, filter these matches, and more efficiently quantify proteins of interest. Importantly, the use of Comet for peptide spectral matching allowed for a fully featured search, including analysis of post-translational modifications, with well-known and extensively validated scoring. These data could then be used to trigger subsequent scans in an adaptive and flexible manner. In this work we tested the utility of this adaptive data acquisition platform to improve the efficiency and accuracy of multiplexed quantitative experiments. We found that RTS enabled a 2-fold increase in mass spectrometric data acquisition efficiency. Orbiter's RTS quantified more than 8000 proteins across 10 proteomes in half the time of an SPS-MS3 analysis (18 h for RTS, 36 h for SPS-MS3).


Assuntos
Proteoma , Proteômica , Bases de Dados Factuais , Espectrometria de Massas , Peptídeos
5.
Anal Chem ; 92(9): 6478-6485, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250601

RESUMO

The rise of sample multiplexing in quantitative proteomics for the dissection of complex phenotypic comparisons has been advanced by the development of ever more sensitive and robust instrumentation. Here, we evaluated the utility of the Orbitrap Eclipse Tribrid mass spectrometer (advanced quadrupole filter, optimized FTMS scan overhead) and new instrument control software features (Precursor Fit filtering, TurboTMT and Real-time Peptide Search filtering). Multidimensional comparisons of these novel features increased total peptide identifications by 20% for SPS-MS3 methods and 14% for HRMS2 methods. Importantly Real-time Peptide Search filtering enabled a ∼2× throughput improvement for quantification. Across the board, these sensitivity increases were attained without sacrificing quantitative accuracy. New hardware and software features enable more efficient characterization in pursuit of comparative whole proteome insights.


Assuntos
Peptídeos/análise , Proteômica , Espectrometria de Massas
6.
Nat Methods ; 14(3): 259-262, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135259

RESUMO

We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.proteometools.org) will be extended to >1 million peptides, and all data will be shared with the community via ProteomicsDB and ProteomeXchange.


Assuntos
Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Proteínas , Genoma Humano/genética , Humanos
7.
Mol Cell Proteomics ; 17(10): 2051-2067, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007914

RESUMO

The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses (n = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS versus 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Proteoma/análise , Proteômica/instrumentação , Proteômica/métodos , Cromatografia Líquida , Células HEK293 , Resposta ao Choque Térmico , Humanos , Marcação por Isótopo , Estabilidade Proteica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
8.
J Environ Manage ; 265: 110578, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421565

RESUMO

Rangelands are typically characterized by low precipitation and low biomass which makes them susceptible to disturbance and difficult to reclaim. These characteristics become a management issue when considering the widespread and significant impact of oil and gas development on rangelands. Reclamation from this land use involves the complexities of dealing with multiple state and federal agencies, private landowners, and their sometimes conflicting rules. Reference plots (e.g., nearby undisturbed sites) can help with these issues by providing an objective context for reclamation planning. They are selected to provide a comparison that is similar to a reclamation site in most aspects except for the disturbance activity. This allows for the relative condition of the reclamation site to be determined. Because selection of reference plots is normally expert-driven on a site-by-site basis, it can be time consuming and thus ineffective in helping to meet reclamation goals over large landscapes. The Automated Reference Tool (ART) was developed to improve the efficiency and efficacy of reference plot selection. The ART improves reference plot selection through remote sensing and indicators of land potential by selecting reference plots of similar land potential to the reclamation site based on soil texture, topography, and geology. We evaluated the ART in the context of well-pad reclamation to determine if ART-selected plots were appropriate to use as reference when compared to an existing reference plot network. We applied the ART to reclamation sites managed by the Bureau of Land Management's (BLM) White River Field Office, Colorado which had existing expert-selected reference plots. We found that the ART-selected reference plots and their matching expert-selected reference plot had similar large-scale vegetative cover characteristics (total foliar: R2 = 0.34, p-value = 0.0012) and dissimilar finer-scale cover characteristics (plant diversity: R2 = 0.079, p-value = 0.15). In addition, we detected similarities in their soil water content (R2 = 0.43, p-value<0.001), depth to restricting layer (RMSD = 21.90), and rock fragment (RMSD = 19.99). These results demonstrate that ART could be a useful tool for managers to help meet their reclamation goals over large landscapes, but it is not a complete automation of the reference selection process.


Assuntos
Solo , Biomassa , Colorado
9.
Anal Chem ; 91(6): 4010-4016, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30672687

RESUMO

Multiplexed, isobaric tagging methods are powerful techniques to increase throughput, precision, and accuracy in quantitative proteomics. The dynamic range and accuracy of quantitation, however, can be limited by coisolation of tag-containing peptides that release reporter ions and conflate quantitative measurements across precursors. Methods to alleviate these effects often lead to the loss of protein and peptide identifications through online or offline filtering of interference containing spectra. To alleviate this effect, high-Field Asymmetric-waveform Ion Mobility Spectroscopy (FAIMS) has been proposed as a method to reduce precursor coisolation and improve the accuracy and dynamic range of multiplex quantitation. Here we tested the use of FAIMS to improve quantitative accuracy using previously established TMT-based interference standards (triple-knockout [TKO] and Human-Yeast Proteomics Resource [HYPER]). We observed that FAIMS robustly improved the quantitative accuracy of both high-resolution MS2 (HRMS2) and synchronous precursor selection MS3 (SPS-MS3)-based methods without sacrificing protein identifications. We further optimized and characterized the main factors that enable robust use of FAIMS for multiplexed quantitation. We highlight these factors and provide method recommendations to take advantage of FAIMS technology to improve isobaric-tag-quantification moving forward.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Neoplasias/metabolismo , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HCT116 , Humanos , Peptídeos/metabolismo , Proteoma/metabolismo
10.
Anal Chem ; 90(21): 12519-12526, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30252444

RESUMO

Intact protein sequencing by tandem mass spectrometry (MS/MS), known as top-down protein sequencing, relies on efficient gas-phase fragmentation at multiple experimental conditions to achieve extensive amino acid sequence coverage. We developed the "topdownr" R-package for automated construction of multimodal (i.e., involving CID, HCD, ETD, ETciD, EThcD, and UVPD) MS/MS fragmentation methods on an orbitrap instrument platform and systematic analysis of the resultant spectra. We used topdownr to generate and analyze thousands of MS/MS spectra for five intact proteins of 10-30 kDa. We achieved 90-100% coverage for the proteins tested and derived guiding principles for efficient sequencing of intact proteins. The data analysis workflow and statistical models of topdownr software and multimodal MS/MS experiments provide a framework for optimizing MS/MS sequencing for any intact protein. Refined topdownr software will be suited for comprehensive characterization of protein pharmaceuticals and eventually also for de novo sequencing and detailed characterization of intact proteins.


Assuntos
Automação , Proteínas/química , Proteômica , Algoritmos , Gases/química , Análise de Sequência de Proteína , Software , Espectrometria de Massas em Tandem
11.
Anal Chem ; 90(15): 9529-9537, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969236

RESUMO

Liquid chromatography (LC) prefractionation is often implemented to increase proteomic coverage; however, while effective, this approach is laborious, requires considerable sample amount, and can be cumbersome. We describe how interfacing a recently described high-field asymmetric waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer (MS) enables the collection of single-shot proteomic data with comparable depth to that of conventional two-dimensional LC approaches. This next generation FAIMS device incorporates improved ion sampling at the ESI-FAIMS interface, increased electric field strength, and a helium-free ion transport gas. With fast internal compensation voltage (CV) stepping (25 ms/transition), multiple unique gas-phase fractions may be analyzed simultaneously over the course of an MS analysis. We have comprehensively demonstrated how this device performs for bottom-up proteomics experiments as well as characterized the effects of peptide charge state, mass loading, analysis time, and additional variables. We also offer recommendations for the number of CVs and which CVs to use for different lengths of experiments. Internal CV stepping experiments increase protein identifications from a single-shot experiment to >8000, from over 100 000 peptide identifications in as little as 5 h. In single-shot 4 h label-free quantitation (LFQ) experiments of a human cell line, we quantified 7818 proteins with FAIMS using intra-analysis CV switching compared to 6809 without FAIMS. Single-shot FAIMS results also compare favorably with LC fractionation experiments. A 6 h single-shot FAIMS experiment generates 8007 protein identifications, while four fractions analyzed for 1.5 h each produce 7776 protein identifications.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Peptídeos/análise , Proteínas/análise , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Linhagem Celular , Humanos
12.
Mol Cell Proteomics ; 14(10): 2644-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26193884

RESUMO

The field of proteomics almost uniformly relies on peptide cation analysis, leading to an underrepresentation of acidic portions of proteomes, including relevant acidic posttranslational modifications. Despite the many benefits negative mode proteomics can offer, peptide anion analysis remains in its infancy due mainly to challenges with high-pH reversed-phase separations and a lack of robust fragmentation methods suitable for peptide anion characterization. Here, we report the first implementation of activated ion negative electron transfer dissociation (AI-NETD) on the chromatographic timescale, generating 7,601 unique peptide identifications from Saccharomyces cerevisiae in single-shot nLC-MS/MS analyses of tryptic peptides-a greater than 5-fold increase over previous results with NETD alone. These improvements translate to identification of 1,106 proteins, making this work the first negative mode study to identify more than 1,000 proteins in any system. We then compare the performance of AI-NETD for analysis of peptides generated by five proteases (trypsin, LysC, GluC, chymotrypsin, and AspN) for negative mode analyses, identifying as many as 5,356 peptides (1,045 proteins) with LysC and 4,213 peptides (857 proteins) with GluC in yeast-characterizing 1,359 proteins in total. Finally, we present the first deep-sequencing approach for negative mode proteomics, leveraging offline low-pH reversed-phase fractionation prior to online high-pH separations and peptide fragmentation with AI-NETD. With this platform, we identified 3,467 proteins in yeast with trypsin alone and characterized a total of 3,730 proteins using multiple proteases, or nearly 83% of the expressed yeast proteome. This work represents the most extensive negative mode proteomics study to date, establishing AI-NETD as a robust tool for large-scale peptide anion characterization and making the negative mode approach a more viable platform for future proteomic studies.


Assuntos
Proteoma , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida/métodos , Elétrons , Concentração de Íons de Hidrogênio , Proteômica/instrumentação , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos
13.
Anal Chem ; 88(6): 3295-303, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26882330

RESUMO

We describe a new method to accomplish multiplexed, absolute protein quantification in a targeted fashion. The approach draws upon the recently developed neutron encoding (NeuCode) metabolic labeling strategy and parallel reaction monitoring (PRM). Since PRM scanning relies upon high-resolution tandem mass spectra for targeted protein quantification, incorporation of multiple NeuCode labeled peptides permits high levels of multiplexing that can be accessed from high-resolution tandem mass spectra. Here we demonstrate this approach in cultured cells by monitoring a viral infection and the corresponding viral protein production over many infection time points in a single experiment. In this context the NeuCode PRM combination affords up to 30 channels of quantitative information in a single MS experiment.


Assuntos
Proteínas/análise , Linhagem Celular Tumoral , Humanos , Masculino , Espectrometria de Massas em Tandem
14.
Nat Methods ; 10(4): 332-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435260

RESUMO

We describe a protein quantification method called neutron encoding that exploits the subtle mass differences caused by nuclear binding energy variation in stable isotopes. These mass differences are synthetically encoded into amino acids and incorporated into yeast and mouse proteins via metabolic labeling. Mass spectrometry analysis with high mass resolution (>200,000) reveals the isotopologue-embedded peptide signals, permitting quantification. Neutron encoding will enable highly multiplexed proteome analysis with excellent dynamic range and accuracy.


Assuntos
Cromatografia Líquida/métodos , Nêutrons , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem/métodos , Isótopos de Carbono , Deutério , Regulação Fúngica da Expressão Gênica , Isótopos de Nitrogênio , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Mol Cell Proteomics ; 13(1): 339-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24143002

RESUMO

We describe the comprehensive analysis of the yeast proteome in just over one hour of optimized analysis. We achieve this expedited proteome characterization with improved sample preparation, chromatographic separations, and by using a new Orbitrap hybrid mass spectrometer equipped with a mass filter, a collision cell, a high-field Orbitrap analyzer, and, finally, a dual cell linear ion trap analyzer (Q-OT-qIT, Orbitrap Fusion). This system offers high MS(2) acquisition speed of 20 Hz and detects up to 19 peptide sequences within a single second of operation. Over a 1.3 h chromatographic method, the Q-OT-qIT hybrid collected an average of 13,447 MS(1) and 80,460 MS(2) scans (per run) to produce 43,400 (x) peptide spectral matches and 34,255 (x) peptides with unique amino acid sequences (1% false discovery rate (FDR)). On average, each one hour analysis achieved detection of 3,977 proteins (1% FDR). We conclude that further improvements in mass spectrometer scan rate could render comprehensive analysis of the human proteome within a few hours.


Assuntos
Proteoma/genética , Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Humanos , Peso Molecular , Peptídeos/química , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Mol Cell Proteomics ; 13(9): 2503-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24938287

RESUMO

We describe a synthesis strategy for the preparation of lysine isotopologues that differ in mass by as little as 6 mDa. We demonstrate that incorporation of these molecules into the proteomes of actively growing cells does not affect cellular proliferation, and we discuss how to use the embedded mass signatures (neutron encoding (NeuCode)) for multiplexed proteome quantification by means of high-resolution mass spectrometry. NeuCode SILAC amalgamates the quantitative accuracy of SILAC with the multiplexing of isobaric tags and, in doing so, offers up new opportunities for biological investigation. We applied NeuCode SILAC to examine the relationship between transcript and protein levels in yeast cells responding to environmental stress. Finally, we monitored the time-resolved responses of five signaling mutants in a single 18-plex experiment.


Assuntos
Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Lisina/metabolismo , Proteoma , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/fisiologia
17.
Anal Chem ; 87(16): 8328-35, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26192401

RESUMO

Gas chromatography/mass spectrometry (GC/MS) has long been considered one of the premiere analytical tools for small molecule analysis. Recently, a number of GC/MS systems equipped with high-resolution mass analyzers have been introduced. These systems provide analysts with a new dimension of information, accurate mass measurement to the third or fourth decimal place; however, existing data processing tools do not capitalize on this information. Beyond that, GC/MS spectral reference libraries, which have been curated over the last several decades, contain almost exclusively unit resolution MS spectra making integration of accurate mass data dubious. Here we present an informatic approach, called high-resolution filtering (HRF), which bridges this gap. During HRF, high-resolution mass spectra are assigned putative identifications through traditional spectral matching at unit resolution. Once candidate identities have been assigned, all unique combinations of atoms from these candidate precursors are generated and matched to m/z peaks using narrow mass tolerances. The total amount of measured signal that is annotated is used as a metric of plausibility for the presumed identification. Here we demonstrate that the HRF approach is both feasible and highly specific toward correct identifications.


Assuntos
Filtração , Cromatografia Gasosa-Espectrometria de Massas , Bibliotecas de Moléculas Pequenas/química , Urinálise/métodos , Preparações Farmacêuticas/urina , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Urinálise/instrumentação
19.
Mol Cell Proteomics ; 12(11): 3360-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23882030

RESUMO

We describe a novel amine-reactive chemical label that exploits differential neutron-binding energy between (13)C and (15)N isotopes. These neutron-encoded (NeuCode) chemical labels enable up to 12-plex MS1-based protein quantification. Each structurally identical, but isotopically unique, tag is encoded with a 12.6-mDa mass difference-relative to its nearest neighbor-so that peptides bearing these NeuCode signatures do not increase spectral complexity and are detected only upon analysis with very high mass-resolving powers. We demonstrate that the method provides quantitative performance that is comparable to both metabolic labeling and isobaric tagging while combining the benefits of both strategies. Finally, we employ the tags to characterize the proteome of Saccharomyces cerevisiae during the diauxic shift, a metabolic transition from fermentation to aerobic respiration.


Assuntos
Marcação por Isótopo/métodos , Proteômica/métodos , Aerobiose , Aminas/química , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão/métodos , Fermentação , Nêutrons , Isótopos de Nitrogênio , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos
20.
Proc Natl Acad Sci U S A ; 109(22): 8411-6, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586074

RESUMO

We have developed and implemented a sequence identification algorithm (inSeq) that processes tandem mass spectra in real-time using the mass spectrometer's (MS) onboard processors. The inSeq algorithm relies on accurate mass tandem MS data for swift spectral matching with high accuracy. The instant spectral processing technology takes ∼16 ms to execute and provides information to enable autonomous, real-time decision making by the MS system. Using inSeq and its advanced decision tree logic, we demonstrate (i) real-time prediction of peptide elution windows en masse (∼3 min width, 3,000 targets), (ii) significant improvement of quantitative precision and accuracy (~3x boost in detected protein differences), and (iii) boosted rates of posttranslation modification site localization (90% agreement in real-time vs. offline localization rate and an approximate 25% gain in localized sites). The decision tree logic enabled by inSeq promises to circumvent problems with the conventional data-dependent acquisition paradigm and provides a direct route to streamlined and expedient targeted protein analysis.


Assuntos
Algoritmos , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Sítios de Ligação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Bases de Dados de Proteínas , Árvores de Decisões , Humanos , Dados de Sequência Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Reprodutibilidade dos Testes , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA