Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Nature ; 582(7812): 405-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076263

RESUMO

Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization1-3. To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


Assuntos
Gástrula , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Análise de Célula Única , Somitos/citologia , Somitos/embriologia , Transcriptoma , Animais , Colágeno , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Proteoglicanas , RNA-Seq , Somitos/metabolismo , Fatores de Tempo
3.
Nature ; 562(7726): 272-276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283134

RESUMO

The emergence of multiple axes is an essential element in the establishment of the mammalian body plan. This process takes place shortly after implantation of the embryo within the uterus and relies on the activity of gene regulatory networks that coordinate transcription in space and time. Whereas genetic approaches have revealed important aspects of these processes1, a mechanistic understanding is hampered by the poor experimental accessibility of early post-implantation stages. Here we show that small aggregates of mouse embryonic stem cells (ESCs), when stimulated to undergo gastrulation-like events and elongation in vitro, can organize a post-occipital pattern of neural, mesodermal and endodermal derivatives that mimic embryonic spatial and temporal gene expression. The establishment of the three major body axes in these 'gastruloids'2,3 suggests that the mechanisms involved are interdependent. Specifically, gastruloids display the hallmarks of axial gene regulatory systems as exemplified by the implementation of collinear Hox transcriptional patterns along an extending antero-posterior axis. These results reveal an unanticipated self-organizing capacity of aggregated ESCs and suggest that gastruloids could be used as a complementary system to study early developmental events in the mammalian embryo.


Assuntos
Padronização Corporal , Gástrula/citologia , Gástrula/embriologia , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Animais , Padronização Corporal/genética , Gástrula/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Técnicas In Vitro , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Fatores de Tempo
4.
Development ; 146(10)2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31023877

RESUMO

The caudal lateral epiblast of mammalian embryos harbours bipotent progenitors that contribute to the spinal cord and the paraxial mesoderm in concert with the body axis elongation. These progenitors, called neural mesodermal progenitors (NMPs), are identified as cells that co-express Sox2 and T/brachyury, a criterion used to derive NMP-like cells from embryonic stem cells in vitro However, unlike embryonic NMPs, these progenitors do not self-renew. Here, we find that the protocols that yield NMP-like cells in vitro initially produce a multipotent population that, in addition to NMPs, generates progenitors for the lateral plate and intermediate mesoderm. We show that epiblast stem cells (EpiSCs) are an effective source of these multipotent progenitors, which are further differentiated by a balance between BMP and Nodal signalling. Importantly, we show that NMP-like cells derived from EpiSCs exhibit limited self-renewal in vitro and a gene expression signature like their embryonic counterparts.


Assuntos
Padronização Corporal/fisiologia , Camadas Germinativas/citologia , Células-Tronco Neurais/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Camadas Germinativas/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco Neurais/citologia , Fatores de Transcrição SOXB1/metabolismo
5.
Development ; 144(21): 3894-3906, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951435

RESUMO

The establishment of the anteroposterior (AP) axis is a crucial step during animal embryo development. In mammals, genetic studies have shown that this process relies on signals spatiotemporally deployed in the extra-embryonic tissues that locate the position of the head and the onset of gastrulation, marked by T/Brachyury (T/Bra) at the posterior of the embryo. Here, we use gastruloids, mESC-based organoids, as a model system with which to study this process. We find that gastruloids localise T/Bra expression to one end and undergo elongation similar to the posterior region of the embryo, suggesting that they develop an AP axis. This process relies on precisely timed interactions between Wnt/ß-catenin and Nodal signalling, whereas BMP signalling is dispensable. Additionally, polarised T/Bra expression occurs in the absence of extra-embryonic tissues or localised sources of signals. We suggest that the role of extra-embryonic tissues in the mammalian embryo might not be to induce the axes but to bias an intrinsic ability of the embryo to initially break symmetry. Furthermore, we suggest that Wnt signalling has a separable activity involved in the elongation of the axis.


Assuntos
Padronização Corporal , Polaridade Celular , Embrião de Mamíferos/metabolismo , Membranas Extraembrionárias/metabolismo , Gástrula/metabolismo , Organoides/embriologia , Organoides/metabolismo , Transdução de Sinais , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Fatores de Tempo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
6.
Cells Tissues Organs ; 205(5-6): 320-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517924

RESUMO

Neuromesodermal progenitors (NMps) are a population of bipotent progenitors that maintain competence to generate both spinal cord and paraxial mesoderm throughout the elongation of the posterior body axis. Recent studies have generated populations of NMp-like cells in culture, which have been shown to differentiate to both neural and mesodermal cell fates when transplanted into either mouse or chick embryos. Here, we aim to compare the potential of mouse embryonic stem (ES) cell-derived progenitor populations to generate NMp behaviour against both undifferentiated and differentiated populations. We define NMp behaviour as the ability of cells to: (i) contribute to a significant proportion of the anterior-posterior body axis, (ii) enter into both posterior neural and somitic compartments, and (iii) retain a proportion of the progenitor population within the posterior growth zone. We compare previously identified ES cell-derived NMp-like populations to undifferentiated mouse ES cells and find that they all display similar potentials to generate NMp behaviour in vivo. To assess whether this competence is lost upon further differentiation, we generated anterior and posterior embryonic cell types through the generation of 3D gastruloids and show that NMp competence is lost within the anterior (Brachyury-negative) portion of the gastruloid. Together this suggests that in vitro-derived NMp-like cells maintain an ability to contribute to multiple germ layers that is also present within pluripotent ES cells, rather than acquiring a neuromesodermal competent state through differentiation.


Assuntos
Camadas Germinativas/embriologia , Mesoderma/embriologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Embrião de Galinha , Técnicas de Cultura Embrionária , Camadas Germinativas/citologia , Mesoderma/citologia , Camundongos , Medula Espinal/citologia , Medula Espinal/embriologia
7.
Bioessays ; 38(2): 181-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666846

RESUMO

Understanding the mechanisms of early embryonic patterning and the timely allocation of specific cells to embryonic regions and fates as well as their development into tissues and organs, is a fundamental problem in Developmental Biology. The classical explanation for this process had been built around the notion of positional information. Accordingly the programmed appearance of sources of Morphogens at localized positions within a field of cells directs their differentiation. Recently, the development of organs and tissues from unpatterned and initially identical stem cells (adult and embryonic) has challenged the need for positional information and even the integrity of the embryo, for pattern formation. Here we review the emerging area of organoid biology from the perspective of Developmental Biology. We argue that the events underlying the development of these systems are not purely linked to self-organization, as often suggested, but rather to a process of genetically encoded self-assembly where genetic programs encode and control the emergence of biological structures.


Assuntos
Células-Tronco Embrionárias/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Organoides/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Biologia do Desenvolvimento/métodos , Humanos
8.
Development ; 141(22): 4243-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371361

RESUMO

The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/ß-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation.


Assuntos
Linhagem da Célula/fisiologia , Sistema Nervoso Central/embriologia , Indução Embrionária/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/embriologia , Morfogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Técnicas de Cultura de Células , Citometria de Fluxo , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Imagem com Lapso de Tempo
9.
Development ; 141(22): 4231-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371360

RESUMO

Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'.


Assuntos
Padronização Corporal/fisiologia , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/embriologia , Sistema Nervoso/embriologia , Animais , Agregação Celular/fisiologia , Linhagem Celular , Polaridade Celular/fisiologia , Citometria de Fluxo , Camundongos , Microscopia de Fluorescência
10.
J Vis Exp ; (105)2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26650833

RESUMO

We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/ß-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA