Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Handb Exp Pharmacol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926158

RESUMO

The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.

2.
Mol Pharmacol ; 103(2): 89-99, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36351797

RESUMO

Known off-target interactions frequently cause predictable drug side-effects (e.g., ß1-antagonists used for heart disease, risk ß2-mediated bronchospasm). Computer-aided drug design would improve if the structural basis of existing drug selectivity was understood. A mutagenesis approach determined the ligand-amino acid interactions required for ß1-selective affinity of xamoterol and nebivolol, followed by computer-based modeling to provide possible structural explanations. 3H-CGP12177 whole cell binding was conducted in Chinese hamster ovary cells stably expressing human ß1, ß2, and chimeric ß1/ß2-adrenoceptors (ARs). Single point mutations were investigated in transiently transfected cells. Modeling studies involved docking ligands into three-dimensional receptor structures and performing molecular dynamics simulations, comparing interaction frequencies between apo and holo structures of ß1 and ß2-ARs. From these observations, an ICI89406 derivative was investigated that gave further insights into selectivity. Stable cell line studies determined that transmembrane 2 was crucial for the ß1-selective affinity of xamoterol and nebivolol. Single point mutations determined that the ß1-AR isoleucine (I118) rather than the ß2 histidine (H93) explained selectivity. Studies of other ß1-ligands found I118 was important for ICI89406 selective affinity but not that for betaxolol, bisoprolol, or esmolol. Modeling studies suggested that the interaction energies and solvation of ß1-I118 and ß2-H93 are factors determining selectivity of xamoterol and ICI89406. ICI89406 without its phenyl group loses its high ß1-AR affinity, resulting in the same affinity as for the ß2-AR. The human ß1-AR residue I118 is crucial for the ß1-selective affinity of xamoterol, nebivolol, and ICI89406 but not all ß1-selective compounds. SIGNIFICANCE STATEMENT: Some ligands have selective binding affinity for the human ß1 versus the ß2-adrenoceptor; however, the molecular/structural reason for this is not known. The transmembrane 2 residue isoleucine I118 is responsible for the selective ß1-binding of xamoterol, nebivolol, and ICI89406 but does not explain the selective ß1-binding of betaxolol, bisoprolol, or esmolol. Understanding the structural basis of selectivity is important to improve computer-aided ligand design, and targeting I118 in ß1-adrenoceptors is likely to increase ß1-selectivity of drugs.


Assuntos
Antagonistas Adrenérgicos beta , Bisoprolol , Animais , Cricetinae , Humanos , Xamoterol , Nebivolol/farmacologia , Antagonistas Adrenérgicos beta/metabolismo , Isoleucina , Agonistas Adrenérgicos beta , Betaxolol , Células CHO , Ligantes , Cricetulus , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 1/química
3.
Handb Exp Pharmacol ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709918

RESUMO

Asthma has been recognised as a respiratory disorder for millennia and the focus of targeted drug development for the last 120 years. Asthma is one of the most common chronic non-communicable diseases worldwide. Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide, is caused by exposure to tobacco smoke and other noxious particles and exerts a substantial economic and social burden. This chapter reviews the development of the treatments of asthma and COPD particularly focussing on the ß-agonists, from the isolation of adrenaline, through the development of generations of short- and long-acting ß-agonists. It reviews asthma death epidemics, considers the intrinsic efficacy of clinical compounds, and charts the improvement in selectivity and duration of action that has led to our current medications. Important ß2-agonist compounds no longer used are considered, including some with additional properties, and how the different pharmacological properties of current ß2-agonists underpin their different places in treatment guidelines. Finally, it concludes with a look forward to future developments that could improve the ß-agonists still further, including extending their availability to areas of the world with less readily accessible healthcare.

4.
Mol Pharmacol ; 96(6): 851-861, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624135

RESUMO

G protein-coupled receptors exist in a whole spectrum of conformations that are stabilized by the binding of ligands with different efficacy or intracellular effector proteins. Here, we investigate whether three-dimensional structures of receptor conformations in different states of activation can be used to enrich ligands with agonist behavior in prospective docking calculations. We focused on the ß 2-adrenergic receptor, as it is currently the receptor with the highest number of active-state crystal structures. Comparative docking calculations to distinct conformations of the receptor were used for the in silico prediction of ligands with agonist efficacy. The pharmacology of molecules selected based on these predictions was characterized experimentally, resulting in a hit rate of 37% ligands, all of which were agonists. The ligands furthermore contain a pyrazole moiety that has previously not been described for ß 2-adrenergic receptor ligands, and one of them shows an intrinsic efficacy comparable to salbutamol. SIGNIFICANCE STATEMENT: Structure-based ligand design for G protein-coupled receptors crucially depends on receptor conformation and, hence, their activation state. We explored the influence of using multiple active-conformation X-ray structures on the hit rate of docking calculations to find novel agonists, and how to predict the most fruitful strategy to apply. The results suggest that aggregating the ranks of molecules across docking calculations to more than one active-state structure exclusively yields agonists.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Simulação de Acoplamento Molecular/métodos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Conformação Proteica , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/agonistas
5.
FASEB J ; 31(7): 3150-3166, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28400472

RESUMO

ß-Blockers reduce mortality and improve symptoms in people with heart disease; however, current clinically available ß-blockers have poor selectivity for the cardiac ß1-adrenoceptor (AR) over the lung ß2-AR. Unwanted ß2-blockade risks causing life-threatening bronchospasm and reduced efficacy of ß2-agonist emergency rescue therapy. Thus, current life-prolonging ß-blockers are contraindicated in patients with both heart disease and asthma. Here, we describe NDD-713 and -825, novel highly ß1-selective neutral antagonists with good pharmaceutical properties that can potentially overcome this limitation. Radioligand binding studies and functional assays that use human receptors expressed in Chinese hamster ovary cells demonstrate that NDD-713 and -825 have nanomolar ß1-AR affinity >500-fold ß1-AR vs ß2-AR selectivity and no agonism. Studies in conscious rats demonstrate that these antagonists are orally bioavailable and cause pronounced ß1-mediated reduction of heart rate while showing no effect on ß2-mediated hindquarters vasodilatation. These compounds also have good disposition properties and show no adverse toxicologic effects. They potentially offer a truly cardioselective ß-blocker therapy for the large number of patients with heart and respiratory or peripheral vascular comorbidities.-Baker, J. G., Gardiner, S. M., Woolard, J., Fromont, C., Jadhav, G. P., Mistry, S. N., Thompson, K. S. J., Kellam, B., Hill, S. J., Fischer, P. M. Novel selective ß1-adrenoceptor antagonists for concomitant cardiovascular and respiratory disease.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Benzamidas/farmacologia , Isoindóis/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/química , Humanos , Masculino , Testes de Mutagenicidade , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium
6.
Thorax ; 72(3): 271-276, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927840

RESUMO

Treating people with cardiovascular disease and COPD causes significant clinician anxiety. ß-Blockers save lives in people with heart disease, specifically postinfarction and heart failure. COPD and heart disease frequently coexist and people with both disorders have particularly high cardiovascular mortality. There are concerns about giving ß-blockers to people with concomitant COPD that include reduced basal lung function, diminished effectiveness of emergency ß-agonist treatments, reduced benefit of long-acting ß-agonist treatment and difficulty in discriminating between asthma and COPD. ß-Blockers appear to reduce lung function in both the general population and those with COPD because they are poorly selective for cardiac ß1-adrenoceptors over respiratory ß2-adrenoceptors, and studies have shown that higher ß-agonist doses are required to overcome the ß-blockade. COPD and cardiovascular disease share similar environmental risks and both disease states have high adrenergic and inflammatory activation. ß-Blockers may therefore be particularly helpful in reducing cardiovascular events in this high-risk group. They may reduce the background inflammatory state, and inhibit the tachycardia and hypertension associated with both the endogenous adrenaline and high-dose ß-agonist treatment associated with acute exacerbations of COPD. Some studies have suggested no increased and, at times, reduced mortality in patients with COPD taking ß-blockers for heart disease. However, these are all observational studies and there are no randomised controlled trials. Potential ways to improve this dilemma include the development of highly ß1-selective ß-blockers or the use of non-ß-blocking heart rate reducing agents, such as ivabridine, if these are proven to be beneficial in randomised controlled trials.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Cardiopatias/complicações , Cardiopatias/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Humanos
7.
Nature ; 469(7329): 241-4, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228877

RESUMO

ß-adrenergic receptors (ßARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit ßARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) ß(1)-adrenergic receptor (ß(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonismo Parcial de Drogas , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Albuterol/química , Albuterol/metabolismo , Albuterol/farmacologia , Anfetaminas/química , Anfetaminas/metabolismo , Anfetaminas/farmacologia , Animais , Sítios de Ligação , Catecolaminas/metabolismo , Cristalografia por Raios X , Dobutamina/química , Dobutamina/metabolismo , Dobutamina/farmacologia , Desenho de Fármacos , Ligação de Hidrogênio , Hidroxiquinolinas/química , Hidroxiquinolinas/metabolismo , Hidroxiquinolinas/farmacologia , Isoproterenol/química , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Ligantes , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Perus
8.
FASEB J ; 29(7): 2859-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837585

RESUMO

At the ß1-adrenoceptor, CGP 12177 potently antagonizes agonist responses at the primary high-affinity catecholamine conformation while also exerting agonist effects of its own through a secondary low-affinity conformation. A recent mutagenesis study identified transmembrane region (TM)4 of the ß1-adrenoceptor as key for this low-affinity conformation. Others suggested that TM4 has a role in ß1-adrenoceptor oligomerization. Here, assessment of the dissociation rate of a fluorescent analog of CGP 12177 [bordifluoropyrromethane-tetramethylrhodamine-(±)CGP 12177 (BODIPY-TMR-CGP)] at the human ß1-adrenoceptor expressed in Chinese hamster ovary cells revealed negative cooperative interactions between 2 distinct ß1-adrenoceptor conformations. The dissociation rate of 3 nM BODIPY-TMR-CGP was 0.09 ± 0.01 min(-1) in the absence of competitor ligands, and this was enhanced 2.2- and 2.1-fold in the presence of 1 µM CGP 12177 and 1 µM propranolol, respectively. These effects on the BODIPY-TMR-CGP dissociation rate were markedly enhanced in ß1-adrenoceptor homodimers constrained by bimolecular fluorescence complementation (9.8- and 9.9-fold for 1 µM CGP 12177 and 1 µM propranolol, respectively) and abolished in ß1-adrenoceptors containing TM4 mutations vital for the second conformation pharmacology. This study suggests that negative cooperativity across a ß1-adrenoceptor homodimer may be responsible for generating the low-affinity pharmacology of the secondary ß1-adrenoceptor conformation.


Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Propanolaminas/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Animais , Sítios de Ligação , Compostos de Boro/metabolismo , Células CHO , Cricetinae , Cricetulus , Ciclopentanos/metabolismo , Humanos , Cinética , Ligantes , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Pirróis/metabolismo , Receptores Adrenérgicos beta 1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Mol Pharmacol ; 87(1): 103-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324048

RESUMO

Salmeterol is a long-acting ß2-agonist, widely used as an inhaled treatment of asthma and chronic obstructive pulmonary disease. It has very high ß2-affinity (log KD -8.95) and is very selective for the ß2-adrenoceptor (1000-fold selectivity over the ß1-adrenoceptor). This study used a mutagenesis approach to determine the exact amino acids in the human ß2-adrenoceptor responsible for this very high selectivity. Wild-type ß2- and ß1-adrenoceptors, chimeric ß2/ß1-adrenoceptors, and receptors with single-point mutations were transfected into Chinese hamster ovary-K1 cells, and affinity and function were studied using [(3)H]CGP 12177 [(-)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one] whole-cell binding and [(3)H]cAMP accumulation. Extracellular loop 3 (and specifically amino acid K305) had the largest single effect by reducing salmeterol's affinity for the ß2-adrenoceptor by 31-fold. H296 in transmembrane 6 also had a major effect (18-fold reduction in salmeterol affinity). Combining these, in the double mutant ß2-H296K-K305D, reduced salmeterol's affinity by 275-fold, to within 4-fold of that of the ß1-adrenoceptor, without affecting the affinity or selectivity of other ß2-agonists (salbutamol, formoterol, fenoterol, clenbuterol, or adrenaline). Another important amino acid was Y308 in transmembrane 7, although this also affected the affinity and selectivity of other agonists. F194 in extracellular loop 2 and R304 in extracellular loop 3 also had minor effects. None of these mutations (including the double mutant ß2-H296K-K305D) affected the efficacy or duration of action of salmeterol. This suggests that the high affinity and selectivity of salmeterol are due to specific amino acids within the receptor itself, but that the duration of action is at least in part due to other factors, for example lipophilicity.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/análogos & derivados , Receptores Adrenérgicos beta 2/metabolismo , Albuterol/farmacologia , Aminoácidos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Humanos , Mutação Puntual , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Xinafoato de Salmeterol
11.
Mol Pharmacol ; 85(5): 811-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608857

RESUMO

The ß1-adrenoceptor exists in two agonist conformations/states: 1) a high-affinity state where responses to catecholamines and other agonists (e.g., cimaterol) are potently inhibited by ß1-adrenoceptor antagonists, and 2) a low-affinity secondary conformation where agonist responses, particularly CGP12177 [(-)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one] are relatively resistant to inhibition by ß1-adrenoceptor antagonists. Although both states have been demonstrated in many species (including human), the precise nature of the secondary state is unknown and does not occur in the closely related ß2-adrenoceptor. Here, using site-directed mutagenesis and functional measurements of production of a cyclic AMP response element upstream of a secreted placental alkaline phosphatase reporter gene and accumulation of (3)H-cAMP, we examined the pharmacological consequences of swapping transmembrane (TM) regions of the human ß1- and ß2-adrenoceptors, followed by single point mutations, to determine the key residues involved in the ß1-adrenoceptor secondary conformation. We found that TM4 (particularly amino acids L195 and W199) had a major role in the generation of the secondary ß1-adrenoceptor conformation. Thus, unlike at the human ß1-wild-type adrenoceptor, at ß1-TM4 mutant receptors, cimaterol and CGP12177 responses were both potently inhibited by antagonists. CGP12177 acted as a simple partial agonist with similar KB and EC50 values in the ß1-TM4 but not ß1-wild-type receptors. Furthermore pindolol switched from a biphasic concentration response at human ß1-wild-type adrenoceptors to a monophasic concentration response in the ß1-TM4 mutant receptors. Mutation of these amino acids to those found in the ß2-adrenoceptor (L195Q and W199Y), or mutation of a single residue (W199D) in the human ß1-adrenoceptor thus abolished this secondary conformation and created a ß1-adrenoceptor with only one high-affinity agonist conformation.


Assuntos
Agonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Conformação Proteica , Estrutura Secundária de Proteína
12.
Nature ; 454(7203): 486-91, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18594507

RESUMO

G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A resolution crystal structure of a beta(1)-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol. The modified turkey (Meleagris gallopavo) receptor was selected to be in its antagonist conformation and its thermostability improved by earlier limited mutagenesis. The ligand-binding pocket comprises 15 side chains from amino acid residues in 4 transmembrane alpha-helices and extracellular loop 2. This loop defines the entrance of the ligand-binding pocket and is stabilized by two disulphide bonds and a sodium ion. Binding of cyanopindolol to the beta(1)-adrenergic receptor and binding of carazolol to the beta(2)-adrenergic receptor involve similar interactions. A short well-defined helix in cytoplasmic loop 2, not observed in either rhodopsin or the beta(2)-adrenergic receptor, directly interacts by means of a tyrosine with the highly conserved DRY motif at the end of helix 3 that is essential for receptor activation.


Assuntos
Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1 , Antagonistas de Receptores Adrenérgicos beta 1 , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Pindolol/análogos & derivados , Pindolol/química , Pindolol/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformação Proteica , Receptores Adrenérgicos beta 1/metabolismo , Termodinâmica , Perus
13.
Eur J Med Chem ; 246: 114961, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495629

RESUMO

Biomedical applications of molecules that are able to modulate ß-adrenergic signaling have become increasingly attractive over the last decade, revealing that ß-adrenergic receptors (ß-ARs) are key targets for a plethora of therapeutic interventions, including cancer. Despite successes in ß-AR drug discovery, identification of ß-AR ligands that are useful as selective chemical tools in pharmacological studies of the three ß-AR subtypes, or lead compounds for drug development is still a highly challenging task. This is mainly due to the intrinsic plasticity of ß-ARs as G protein-coupled receptors in conjunction with the requirement for functional receptor subtype selectivity, tissue specificity and minimal off-target effects. With the aim to provide insight into structure-activity relationships for the three ß-AR subtypes, we have synthesized and obtained the pharmacological profile of a series of structurally diverse compounds (named MC) that were designed based on the aryloxy-propanolamine scaffold of SR59230A. Comparative analysis of their predicted binding mode within the active and inactive states of the receptors in combination with their pharmacological profile revealed key structural elements that control their activity as agonists or antagonists, in addition to clues about substituents that mediate selectivity for one receptor subtype over the others. We anticipate that these results will facilitate selective ß-AR drug development efforts.


Assuntos
Receptores Adrenérgicos beta , Receptores Acoplados a Proteínas G , Humanos , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
14.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123151

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
15.
FASEB J ; 25(12): 4486-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21865315

RESUMO

ß-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (ß1; HR) and hindquarters vascular conductance (ß2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 µg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 µg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122 ± 12, + 129 ± 11, and + 59 ± 11 beats/min, respectively; n=6), whereas other ß-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of ß1-adrenoceptor efficacy (R(2)=0.93; P<0.0001).


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Fármacos Cardiovasculares/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Isoproterenol/farmacologia , Masculino , Fenoxiacetatos/farmacologia , Fenoxipropanolaminas/farmacologia , Propanolaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Resistência Vascular/efeitos dos fármacos , Xamoterol/farmacologia
16.
Pharmacol Res Perspect ; 10(2): e00936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224877

RESUMO

α2-Adrenoceptors, subdivided into α2A, α2B, and α2C subtypes and expressed in heart, blood vessels, kidney, platelets and brain, are important for blood pressure, sedation, analgesia, and platelet aggregation. Brain α2C-adrenoceptor blockade has also been suggested to be beneficial for antipsychotic action. However, comparing α2-adrenoceptor subtype affinity is difficult due to significant species and methodology differences in published studies. Here, 3 H-rauwolscine whole cell binding was used to determine the affinity and selectivity of 99 α-antagonists (including antidepressants and antipsychotics) in CHO cells expressing human α2A, α2B, or α2C-adrenoceptors, using an identical method to ß and α1-adrenoceptor measurements, thus allowing direct human receptor comparisons. Yohimbine, RX821002, RS79948, and atipamezole are high affinity non-selective α2-antagonists. BRL44408 was the most α2A-selective antagonist, although its α1A-affinity (81 nM) is only 9-fold greater than its α2C-affinity. MK-912 is the highest-affinity, most α2C-selective antagonist (0.15 nM α2C-affinity) although its α2C-selectivity is only 13-fold greater than at α2A. There are no truely α2B-selective antagonists. A few α-ligands with significant ß-affinity were detected, for example, naftopidil where its clinical α1A-affinity is only 3-fold greater than off-target ß2-affinity. Antidepressants (except mirtazapine) and first-generation antipsychotics have higher α1A than α2-adrenoceptor affinity but poor ß-affinity. Second-generation antipsychotics varied widely in their α2-adrenoceptor affinity. Risperidone (9 nM) and paliperidone (14 nM) have the highest α2C-adrenoceptor affinity however this is only 5-fold selective over α2A, and both have a higher affinity for α1A (2 nM and 4 nM, respectively). So, despite a century of yohimbine use, and decades of α2-subtype studies, there remains plenty of scope to develop α2-subtype selective antagonists.


Assuntos
Antipsicóticos , Animais , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Cricetinae , Cricetulus , Humanos , Receptores Adrenérgicos alfa 1/metabolismo , Ioimbina/metabolismo , Ioimbina/farmacologia
17.
Pharmacol Res Perspect ; 10(5): e01003, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36101495

RESUMO

α2-adrenoceptors, (α2A, α2B and α2C-subtypes), are Gi-coupled receptors. Central activation of brain α2A and α2C-adrenoceptors is the main site for α2-agonist mediated clinical responses in hypertension, ADHD, muscle spasm and ITU management of sedation, reduction in opiate requirements, nausea and delirium. However, despite having the same Gi-potency in functional assays, some α2-agonists also stimulate Gs-responses whilst others do not. This was investigated. Agonist responses to 49 different α-agonists were studied (CRE-gene transcription, cAMP, ERK1/2-phosphorylation and binding affinity) in CHO cells stably expressing the human α2A, α2B or α2C-adrenoceptor, enabling ligand intrinsic efficacy to be determined (binding KD /Gi-IC50 ). Ligands with high intrinsic efficacy (e.g., brimonidine and moxonidine at α2A) stimulated biphasic (Gi-Gs) concentration responses, however for ligands with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi-only). ERK1/2-phosphorylation responses appeared to be Gi-mediated. For Gs-mediated responses to be observed, both a system with high receptor reserve and high agonist intrinsic efficacy were required. From the Gi-mediated efficacy ratio, the degree of Gs-coupling could be predicted. The clinical relevance and precise receptor conformational changes that occur, given the structural diversity of compounds with high intrinsic efficacy, remains to be determined. Comparison with α1 and ß1/ß2-adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g., α2:dexmedetomidine, α1:A61603) whilst e.g., oxymetazoline had high affinity for both α2A and α1A-subtypes, compared to all others. Some compounds had subclass selectivity due to selective intrinsic efficacy (e.g., α2:brimonidine, α1:methoxamine/etilefrine). A detailed knowledge of these agonist characteristics is vital for improving computer-based deep-learning and drug design.


Assuntos
Ligantes , Animais , Tartarato de Brimonidina , Células CHO , Cricetinae , Cricetulus , Humanos
18.
Pharmacol Res Perspect ; 9(4): e00799, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34355529

RESUMO

Highly selective drugs offer a way to minimize side-effects. For agonist ligands, this could be through highly selective affinity or highly selective efficacy, but this requires careful measurements of intrinsic efficacy. The α1-adrenoceptors are important clinical targets, and α1-agonists are used to manage hypotension, sedation, attention deficit hypersensitivity disorder (ADHD), and nasal decongestion. With 100 years of drug development, there are many structurally different compounds with which to study agonist selectivity. This study examined 62 α-agonists at the three human α1-adrenoceptor (α1A, α1B, and α1D) stably expressed in CHO cells. Affinity was measured using whole-cell 3 H-prazosin binding, while functional responses were measured for calcium mobilization, ERK1/2-phosphorylation, and cAMP accumulation. Efficacy ratios were used to rank compounds in order of intrinsic efficacy. Adrenaline, noradrenaline, and phenylephrine were highly efficacious α1-agonists at all three receptor subtypes. A61603 was the most selective agonist and its very high α1A-selectivity was due to selective α1A-affinity (>660-fold). There was no evidence of Gq-calcium versus ERK-phosphorylation biased signaling at the α1A, α1B, or α1D-adrenoceptors. There was little evidence for α1A calcium versus cAMP biased signaling, although there were suggestions of calcium versus cAMP bias the α1B-adrenoceptor. Comparisons of the rank order of ligand intrinsic efficacy suggest little evidence for selective intrinsic efficacy between the compounds, with perhaps the exception of dobutamine which may have some α1D-selective efficacy. There seems plenty of scope to develop affinity selective and intrinsic efficacy selective drugs for the α1-adrenoceptors in future.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ligantes , Fosforilação/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética
19.
Chem Commun (Camb) ; 57(81): 10516-10519, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550124

RESUMO

We developed a docking-based fragment evolution approach that extends orthosteric fragments towards a less conserved secondary binding pocket of GPCRs. Evaluating 13 000 extensions for the ß1- and ß2-adrenergic receptors we synthesized and tested 112 bitopic molecules. Our results confirmed the positive contribution of the secondary binding pocket to both potency and selectivity optimizations.

20.
Eur J Cancer ; 147: 106-116, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639323

RESUMO

PURPOSE: The sympathetic nervous system drives breast cancer progression through ß-adrenergic receptor signalling. This discovery has led to the consideration of cardiac ß-blocker drugs as novel strategies for anticancer therapies. Carvedilol is a ß-blocker used in the management of cardiovascular disorders, anxiety, migraine and chemotherapy-induced cardiotoxicity. However, little is known about how carvedilol affects cancer-related outcomes. METHODS: To address this, we investigated the effects of carvedilol on breast cancer cell lines, in mouse models of breast cancer and in a large cohort of patients with breast cancer (n = 4014). RESULTS: Treatment with carvedilol blocked the effects of sympathetic nervous system activation, reducing primary tumour growth and metastasis in a mouse model of breast cancer and preventing invasion by breast cancer cell lines. A retrospective analysis found that women using carvedilol at breast cancer diagnosis (n = 136) had reduced breast cancer-specific mortality compared with women who did not (n = 3878) (5-year cumulative incidence of breast cancer deaths: 3.1% versus 5.7%; p = 0.024 and 0.076 from univariate and multivariable analyses, respectively) after a median follow-up of 5.5 years. CONCLUSIONS: These findings provide a rationale to further explore the use of the ß-blocker carvedilol as a novel strategy to slow cancer progression.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carvedilol/uso terapêutico , Antagonistas Adrenérgicos beta/efeitos adversos , Animais , Antineoplásicos/efeitos adversos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carvedilol/efeitos adversos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Estudos Retrospectivos , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA