Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
J Immunol ; 211(3): 497-507, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294291

RESUMO

Cachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia. Significant expansion of PMN-MDSCs was observed in the cardiac and skeletal muscles of cachectic murine models. Importantly, the depletion of this cell subset, using depleting anti-Ly6G Abs, attenuated this cachectic phenotype. To elucidate the mechanistic involvement of PMN-MDSCs in cachexia, we examined major mediators, that is, IL-6, TNF-α, and arginase 1. By employing a PMN-MDSC-specific Cre-recombinase mouse model, we showed that PMN-MDSCs were not maintained by IL-6 signaling. In addition, PMN-MDSC-mediated cardiac and skeletal muscle loss was not abrogated by deficiency in TNF-α or arginase 1. Alternatively, we found PMN-MDSCs to be critical producers of activin A in cachexia, which was noticeably elevated in cachectic murine serum. Moreover, inhibition of the activin A signaling pathway completely protected against cardiac and skeletal muscle loss. Collectively, we demonstrate that PMN-MDSCs are active producers of activin A, which in turn induces cachectic muscle loss. Targeting this immune/hormonal axis will allow the development of novel therapeutic interventions for patients afflicted with this debilitating syndrome.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Arginase/metabolismo , Caquexia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Miocárdio , Músculo Esquelético/metabolismo
3.
Immunity ; 39(6): 1095-107, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24290911

RESUMO

Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.


Assuntos
Neoplasias Colorretais/imunologia , Células Dendríticas/metabolismo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunidade/genética , Receptores Fc/genética , Receptores Fc/metabolismo , Animais , Neoplasias Colorretais/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imunidade Ativa , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Immunity ; 37(5): 930-46, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23123061

RESUMO

Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens.


Assuntos
Antígeno Carcinoembrionário/imunologia , Imunidade nas Mucosas/imunologia , Intestinos/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Animais , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Citoplasma/genética , Citoplasma/imunologia , Citoplasma/metabolismo , Homeostase , Imunidade nas Mucosas/genética , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Ativação Linfocitária , Metagenoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Isoformas de Proteínas , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Tirosina/genética , Tirosina/imunologia , Tirosina/metabolismo
5.
Nature ; 509(7501): 497-502, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24717441

RESUMO

The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease.


Assuntos
Antígenos CD1d/imunologia , Células Epiteliais/imunologia , Imunidade nas Mucosas/imunologia , Interleucina-10/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Animais , Proteínas de Transporte/metabolismo , Colite/imunologia , Colite/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/genética , Masculino , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Oxazolona , Fator de Transcrição STAT3/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(14): E2862-E2871, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28330995

RESUMO

The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn-albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity.


Assuntos
Albuminas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores Fc/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cães , Feminino , Hepatócitos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Homeostase , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores Fc/genética , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Transcitose/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G467-G475, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751424

RESUMO

Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions.NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner.


Assuntos
Colo , Células Epiteliais , Mucosa Intestinal , Organoides , Cultura Primária de Células/métodos , Animais , Células Cultivadas , Colo/patologia , Colo/fisiologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia , Camundongos , Organoides/patologia , Organoides/fisiologia
8.
J Immunol ; 194(10): 4595-603, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25934922

RESUMO

The neonatal FcR (FcRn) belongs to the extensive and functionally divergent family of MHC molecules. Contrary to classical MHC family members, FcRn possesses little diversity and is unable to present Ags. Instead, through its capacity to bind IgG and albumin with high affinity at low pH, it regulates the serum half-lives of both of these proteins. In addition, FcRn plays an important role in immunity at mucosal and systemic sites through its ability to affect the lifespan of IgG, as well as its participation in innate and adaptive immune responses. Although the details of its biology are still emerging, the ability of FcRn to rescue albumin and IgG from early degradation represents an attractive approach to alter the plasma half-life of pharmaceuticals. We review some of the most novel aspects of FcRn biology, immune as well as nonimmune, and provide some examples of FcRn-based therapies.


Assuntos
Albuminas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Sistema Imunitário/crescimento & desenvolvimento , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Humanos
9.
Int J Mol Sci ; 18(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28817068

RESUMO

Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Neoplasias/dietoterapia , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Tratamento Farmacológico , Humanos , Neoplasias/patologia
10.
J Med Genet ; 52(5): 348-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691505

RESUMO

BACKGROUND: Inherited mutations in DNA mismatch repair genes predispose to different cancer syndromes depending on whether they are mono-allelic or bi-allelic. This supports a causal relationship between expression level in the germline and phenotype variation. As a model to study this relationship, our study aimed to define the pathogenic characteristics of a recurrent homozygous coding variant in PMS2 displaying an attenuated phenotype identified by clinical genetic testing in seven Inuit families from Northern Quebec. METHODS: Pathogenic characteristics of the PMS2 mutation NM_000535.5:c.2002A>G were studied using genotype-phenotype correlation, single-molecule expression detection and single genome microsatellite instability analysis. RESULTS: This PMS2 mutation generates a de novo splice site that competes with the authentic site. In homozygotes, expression of the full-length protein is reduced to a level barely detectable by conventional diagnostics. Median age at primary cancer diagnosis is 22 years among 13 NM_000535.5:c.2002A>G homozygotes, versus 8 years in individuals carrying bi-allelic truncating mutations. Residual expression of full-length PMS2 transcript was detected in normal tissues from homozygotes with cancers in their 20s. CONCLUSIONS: Our genotype-phenotype study of c.2002A>G illustrates that an extremely low level of PMS2 expression likely delays cancer onset, a feature that could be exploited in cancer preventive intervention.


Assuntos
Adenosina Trifosfatases/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Efeito Fundador , Homozigoto , Mutação , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Fenótipo , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Mapeamento Cromossômico , Éxons , Feminino , Expressão Gênica , Estudos de Associação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento , Adulto Jovem
11.
Crit Rev Biotechnol ; 35(2): 235-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24156398

RESUMO

Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn-Fc interaction can generate longer-lasting and more effective therapeutics.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Imunoterapia , Receptores Fc , Proteínas Recombinantes de Fusão , Animais , Humanos , Camundongos , Modelos Moleculares
12.
Eur J Immunol ; 43(9): 2473-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23696226

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed on activated natural killer (NK) cells wherein it inhibits lysis of CEACAM1-bearing tumor cell lines. The mechanism for this is unknown. Here, we show that interleukin-2-induced expression of CEACAM1 on both mouse and primary human NK cells impairs the ability of NK gene complex group 2 member D (NKG2D) to stimulate cytolysis of CEACAM1-bearing cells. This process requires the expression of CEACAM1 on the NK cells and on the tumor cells, which is consistent with the involvement of trans-homophilic interactions between CEACAM1. Mechanistically, co-engagement of NKG2D and CEACAM1 results in a biochemical association between these two surface receptors and the recruitment of Src homology phosphatase 1 by CEACAM1 that leads to dephosphorylation of the guanine nucleotide exchange factor Vav1 and blockade of downstream signaling that is associated with the initiation of cytolysis. Thus, CEACAM1 on activated NK cells functions as an inhibitory receptor for NKG2D-mediated cytolysis, which has important implications for understanding the means by which CEACAM1 expression adversely affects tumor immunity.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Apoptose/imunologia , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Humanos , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
13.
BMC Psychiatry ; 14: 370, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551691

RESUMO

BACKGROUND: The current study was designed to test if an objective measure of both attention and movement would differentiate children with Oral Language Disorders (OLD) from those with comorbid Attention Deficit/Hyperactivity Disorder (ADHD) and if stimulant medication improved performance when both disorders were present. METHODS: The sample consisted of thirty-three children with an identified oral language disorder (of which 22 had comorbid ADHD) ages 6 to 13 who were enrolled in a yearlong intensive learning intervention program. Those on a stimulant medication were tested at baseline and again a year later on and off medication. RESULTS: Objective measures that included an infrared motion analysis system which tracked and recorded subtle movements discriminated children with OLD from those with a comorbid ADHD disorder whereas classic attention measures did not. There were better attention scores and fewer movements in children while on-medication. CONCLUSIONS: Use of an objective measurement that includes movement detection improves objective diagnostic differential for OLD and ADHD and provides quantifiable changes in performance related to medication for both OLD and ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Intervenção Educacional Precoce/métodos , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/terapia , Adolescente , Criança , Terapia Combinada , Feminino , Humanos , Masculino , Resultado do Tratamento
14.
Cell Mol Life Sci ; 70(8): 1319-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22847331

RESUMO

IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Apresentação Cruzada , Imunoglobulina G/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Receptores Fc/imunologia , Receptores de IgG/imunologia
15.
Proc Natl Acad Sci U S A ; 108(24): 9927-32, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628593

RESUMO

Cross-presentation of IgG-containing immune complexes (ICs) is an important means by which dendritic cells (DCs) activate CD8(+) T cells, yet it proceeds by an incompletely understood mechanism. We show that monocyte-derived CD8(-)CD11b(+) DCs require the neonatal Fc receptor for IgG (FcRn) to conduct cross-presentation of IgG ICs. Consequently, in the absence of FcRn, Fcγ receptor (FcγR)-mediated antigen uptake fails to initiate cross-presentation. FcRn is shown to regulate the intracellular sorting of IgG ICs to the proper destination for such cross-presentation to occur. We demonstrate that FcRn traps antigen and protects it from degradation within an acidic loading compartment in association with the rapid recruitment of key components of the phagosome-to-cytosol cross-presentation machinery. This unique mechanism thus enables cross-presentation to evolve from an atypically acidic loading compartment. FcRn-driven cross-presentation is further shown to control cross-priming of CD8(+) T-cell responses in vivo such that during chronic inflammation, FcRn deficiency results in inadequate induction of CD8(+) T cells. These studies thus demonstrate that cross-presentation in CD8(-)CD11b(+) DCs requires a two-step mechanism that involves FcγR-mediated internalization and FcRn-directed intracellular sorting of IgG ICs. Given the centrality of FcRn in controlling cross-presentation, these studies lay the foundation for a unique means to therapeutically manipulate CD8(+) T-cell responses.


Assuntos
Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Antígenos/imunologia , Western Blotting , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Citosol/imunologia , Citosol/metabolismo , Células Dendríticas/metabolismo , Sulfato de Dextrana , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Concentração de Íons de Hidrogênio , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , NADPH Oxidase 2 , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo , Ligação Proteica , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , ATPases Vacuolares Próton-Translocadoras/imunologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas rab de Ligação ao GTP/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP
16.
Front Mol Biosci ; 11: 1334876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645275

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.

17.
Int J Infect Dis ; : 107136, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880123

RESUMO

OBJECTIVE: Post-marketing surveillance of sotrovimab's effect during implementation in the Canadian population is limited. METHODS: The study used a propensity score matched retrospective cohort design. Follow-up began between the periods of December 15, 2021 to April 30 2022. The study assessed any severe outcome defined as all-cause hospital admission, or mortality within 30 days of a confirmed COVID-19 positive test. Covariate adjusted odds ratios between sotrovimab treatment and the severe outcome was conducted using logistic regression. RESULTS: There were 22,289 individuals meeting treatment criteria for sotrovimab. There were 1,603 treated and 6,299 untreated individuals included in the analysis. Outcome occurrence in the study was 5.49% (treated) and 4.21% (untreated), with a median time from diagnosis to treatment of 1.00 days (IQR = 2.00 days). In the propensity-matched cohort, sotrovimab was not associated with a lower odds of a severe outcome (OR = 1.20; 95% CI: 0.91, 1.58), adjusting for confounding variables. CONCLUSION: After adjusting for confounding variables, sotrovimab treatment was not associated with lower odds of a severe outcome within 30-days of COVID-19 positive date.

18.
J Clin Immunol ; 33 Suppl 1: S9-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22948741

RESUMO

Careful regulation of the body's immunoglobulin G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn), as a single receptor, is capable of regulating both of these molecules and has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a number of other functions that are equally as critical and are increasingly coming to attention. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body via transcytosis across polarized cells. FcRn is also expressed by hematopoietic cells; consistent with this, FcRn regulates MHC class II presentation and MHC class I cross-presentation by dendritic cells. As such, FcRn plays an important role in immune surveillance throughout adult life. The increasing appreciation for FcRn in both homeostatic and pathological conditions is generating an intense interest in the potential for therapeutic modulation of FcRn binding to IgG and albumin.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Albuminas/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Mutação , Ligação Proteica , Engenharia de Proteínas , Transporte Proteico/imunologia , Receptores Fc/genética , Receptores Fc/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia
19.
Front Immunol ; 14: 1190810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304266

RESUMO

Introduction: Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods: We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results: CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion: MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Cromatina , Ácidos Graxos Voláteis , Organoides , Neoplasias Colorretais/genética , Microambiente Tumoral
20.
Gastro Hep Adv ; 2(8): 1103-1119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098742

RESUMO

Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA