RESUMO
Five types of heterocyclic compounds containing trifloromethylpyridine scaffold namely; 3-cyano-2-(N-phenyl)carbamoylmethylthio-6-(thiophen-2-yl)-4-trifluoromethyl-pyridine (6a), thieno[2,3-b]pyridines 3-5 and 7a-c, pyrido[3',2':4,5]thieno[3,2-d] pyrimidines 8-13 and 15a-c, pyrido[3',2':4,5]thieno[3,2-d][1,2,3]triazines 16a,b, and 9-(thiophen-2-yl)-7-(trifluoromethyl) pyrido [3',2':4,5]thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine (14) were synthesized in excellent yields and very pure state. The structures of these compounds were confirmed by elemental and spectral analyses. Most of the synthesized compounds were evaluated as insecticidal agents toward Aphis gossypii insects and promising results obtained. Among all tested compounds, only 6, 7a, 7c and 15c being the most potent compounds against nymphs and adults of Aphis gossypii and their activities are nearly to that of acetamiprid as a reference. The effect of 6a compounds 7a, 7c and 15c on the Aphis digestive system from histological point of view was also included.
Assuntos
Afídeos , Compostos Heterocíclicos , Inseticidas , Piridinas , Animais , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Piridinas/química , Piridinas/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Afídeos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.
Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Estrutura Molecular , Testes de Sensibilidade MicrobianaRESUMO
In the era of modern synthetic methodology and advanced bio-evaluation techniques and considering the notorious history of hepatocellular carcinoma (HCC), hopeful expectations regarding novel bioactive chemotypes have grown dramatically. Among the widely versatile motifs in drug discovery studies are isoquinoline and thieno[2,3-b]pyridine. Herein, the molecular merging of both motifs evoked thieno[2,3-c]isoquinoline as a novel antiproliferative chemotype being hardly studied against HCC. Accordingly, compound series 4, 5, 7 and 8 were synthesized and bioevaluated against the HepG2 cell line. The role of C7-Ac/C8-OH substituents, C8-C9 unsaturation, 1H-pyrrol-1-yl ring closure at C1-NH2 and C6-Ph p-halo-substitution were biologically studied and successfully furnished the lead 5b while showing safe profile against Vero cells. Further, flow cytometric and Annexin V-FITC/PI apoptotic bio-investigations of 5b unveiled remarkable cell cycle arrest at the G2/M phase besides a 60-fold increase in apoptosis. The use of a DFT conformational study followed by Molecular docking and molecular mechanics/generalized born surface area scoring evoked potential tubulin-targeting activity of 5b at colchicine-binding site, which was confirmed by experimental evidence (Tub Inhib IC50 = 71 µM vs. 14 µM for colchicine). Accordingly, preserving C7-acetyl and optimizing halogen position while preserving [6S,7R]-stereochemistry is crucial for optimum binding to colchicine binding site of tubulin.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Chlorocebus aethiops , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Simulação de Acoplamento Molecular , Carcinoma Hepatocelular/tratamento farmacológico , Células Vero , Proliferação de Células , Linhagem Celular Tumoral , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Colchicina/metabolismo , Colchicina/farmacologia , Divisão Celular , Isoquinolinas/farmacologia , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Three new series of 3-(substituted)methylthio-4-cyano-5,6,7,8-tetrahydroisoquinolines were designed and synthesized starting from readily available materials, 7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-pyridyl, 3-pyridyl, phenyl, 4-methoxyphenyl, or 4-chlorophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones 2a-e in high yields and very pure states. Thus, compounds 2a-e were reacted with some chloro reagents, namely, N-aryl-2-chloroacetamides 3a-f and N-(naphthalen-2-yl)-2-chloroacetamide (3g) under mild basic conditions to give the first two series of the target compounds, 3-(N-aryl)carbamoylmethylthio-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles 4a-l and 5a-e, respectively. Reaction of compounds 2d,e with ethyl chloroacetate under the same conditions gave the other series, 3-ethoxycarbonyl-methylthio-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles 6d,e. Structural formulas of all of the new compounds were elucidated and confirmed by elemental and spectral analyses. The insecticidal activity of all synthesized 5,6,7,8-tetrahydrosoquinolines toward the nymphs and adults of Aphis gossypii were screened. The results revealed the promising insecticidal activity of some tested compounds. Moreover, the structure-activity relationships as well as molecular docking of some representative compounds were evaluated.
Assuntos
Afídeos , Inseticidas , Simulação de Acoplamento Molecular , Piridinas , Inseticidas/química , Inseticidas/síntese química , Inseticidas/farmacologia , Animais , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Estrutura-Atividade , Afídeos/efeitos dos fármacos , Desenho de Fármacos , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/síntese química , Nitrilas/química , Nitrilas/síntese química , Nitrilas/farmacologia , Estrutura MolecularRESUMO
Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.
Assuntos
Afídeos , Inseticidas , Piridinas , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Animais , Piridinas/química , Afídeos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacologiaRESUMO
In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evaluated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line (IC50: 0.155 µM) while compound 8d showed the most potent one against MCF7 cell line (IC50: 0.170 µM) in comparison with doxorubicin. In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experimental studies that compound 7e is a potent CDK2 inhibitor with IC50 of 0.149 µM, compared to the Roscovitine control drug with IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an IC50 of 0.199 µM, compared to Methotrexate control drug with IC50 of 0.131 µM. Evaluation of the antioxidant properties of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxidant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.
RESUMO
The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.
Assuntos
Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Modelos Moleculares , Nitrilas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , HumanosRESUMO
Ethyl-2-((8-cyano-3,5,9a-trimethyl-1-(4-oxo-4,5-dihydrothiazol-2-yl)-4-phenyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinolin-7-yl)thio)acetate (5) was synthesized, and its structure was characterized by IR, MS, and NMR (1H and 13C) and verified by a single-crystal X-ray structure determination. Compound 5 adopts a "pincer" conformation. In the crystal, the hydrogen bonds of -H···O, C-H···O, and O-H···S form thick layers of molecules that are parallel to (101). The layers are linked by C-H···π(ring) interactions. The Hirshfeld surface analysis shows that intermolecular hydrogen bonding plays a more important role than both intramolecular hydrogen bonding and π···π stacking in the crystal. The intramolecular noncovalent interactions in 5 were studied by QTAIM, NCI, and DFT-NBO calculations. Based on structural activity relationship studies, leucine-rich repeat kinase 2 (LRRK2) was found to bind 5 and was further subjected to molecular docking studies, molecular dynamics, and ADMET analysis to probe potential drug candidacy.
RESUMO
Cisplatin (CDDP) is an effective chemotherapeutic drug that has been used successfully in treating various tumors. Although its higher antineoplastic agent activity, CDDP exhibited severe side effects that limit its use. CDDP-induced toxicity is attributed to oxidative stress and inflammation. Apocynin (APO) is a bioactive phytochemical with potent antioxidant and anti-inflammatory properties. However, pharmaceutical experts face significant hurdles due to the limited bioavailability and quick elimination of APO. Therefore, we synthesized a chitosan (CTS)-based nano delivery system using the ionic gelation method to enhance APO bioactivity. CTS-APO-NPs were characterized using different physical and chemical approaches, including FTIR, XRD, TGA, Zeta-sizer, SEM, and TEM. In addition, the protective effect of CTS-APO-NPs against CDDP-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity in rats was evaluated. CTS-APO-NPs restored serum biomarkers and antioxidants to their normal levels. Also, histopathological examination was used to assess the recovery of heart, kidney, and liver tissues. CTS-APO-NPs attenuated the oxidative stress mediated by Nrf2 activation while it dampened inflammation mediated by NF-κB suppression. CTS-APO-NPs is a potentially attractive target for more therapeutic trials.
Assuntos
Quitosana , Nanopartículas , Ratos , Animais , Cisplatino/toxicidade , Quitosana/química , Antioxidantes/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Nanopartículas/químicaRESUMO
The reaction of ethyl 5-cyano-2-methyl-4-(thiophen-2-yl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (1) with 2-chloroacetamide or its N-aryl derivatives gave ethyl 6-((2-amino-2-oxoethyl)thio)-5-cyano-2-methyl-4-(thiophen-2-yl) nicotinate (2a) or its N-aryl derivatives 2b-f, respectively. Cyclization of 2a-f into their isomers 3a-f was carried out by heating in absolute ethanol in the presence of a catalytic amount of sodium ethoxide. The o-aminoamide 3a was reacted with some aryl aldehydes in refluxing ethanol containing a few drops of conc. HCl to afford the corresponding tetrahydropyrimidinones 4a-d. The cyclocondensation reaction of 3a with some cycloalkanones such as cyclopentanone and cyclohexanone gave the corresponding spiro compounds 5a,b. The crystal structures of compounds 2a and 2d were determined by single-crystal X-ray diffraction techniques. All new compounds were evaluated for their insecticidal activity toward nymphs and adults of Aphis gossypi.
Assuntos
Inseticidas , Inseticidas/farmacologia , Piridinas/química , Ciclização , EtanolRESUMO
Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.
RESUMO
The reaction of the starting compound, 7-acetyl-4-cyano-1,6-dimethyl-8-phenyl-7,8-dihydroisoquinoline-3(2H)-thione, with some N-aryl-2-chloroacetamides or chloroacetonitrile, in the presence of sodium acetate trihydrate, gave the corresponding substituted 3-methylsulfanyl-7-acetyl-4-cyano-1,6-dimethyl-8-phenyl-7,8-dihydroisoquinolines. Upon heating of the latter compounds with sodium methoxide in methanol, they underwent intramolecular Thorpe-Zeigler cyclization, affording the target isomers 1-amino-2-(substituted)-5,8-dimethyl-6-phenyl-6,7-dihydrothieno[2,3-c]isoquinolines (DHTIQs). The chemical structures of all produced substances were characterized by elemental and spectral analyses. The photophysical characteristics of the produced DHTIIQs (He1-Ph-Cl, He2-Ph-CH3, He3-Ph, and He4-CN) have been investigated as luminous compounds. Potentiodynamic, surface morphology, and theoretical calculations were used to study the behavior of the synthesized DHTIQs as corrosion inhibitors on mild steel in a 1.0 M sulfuric acid solution.
RESUMO
Three new series of isoquinolines, that is, 7-acetyl-3-acetonylsulfanyl-8-aryl-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles (3a-c); 3-acetonylsulfanyl-8-aryl-1,6-dimethyl-7,8-dihydroisoquinoline-4-carbonitriles (4a-c); and 7-acetyl-8-aryl-1,6-dimethyl-3-ethylsulfanyl-7,8-dihydroisoquinoline-4-carbo-nitriles (6a,b) were carefully synthesized. Also, pyrazoloisoquinoline 7 was used as a precursor for synthesis of 7-ethylsulfanyl-4-phenyl-1-thiocarbamoyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (8); 7-benzyl-sulfanyl-4-phenyl-1-thiocarbamoyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (9); and 7-ethylsulfanyl-1-(4-oxo-4,5-dihydrothiazol-2-yl)-4-phenyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (10). Moreover, the crystal structures of two representative compounds were determined. Eleven new compounds 3a, 4a, 3b, 4b, 3c, 4c, 6a, 6b, 8, 9, and 10 were screneed for their toxicological activity against nymphs and adults of Aphis gossypii by using acetamprid, as a reference. After 24 h of treatment, the bioefficacy results indicate that all tested isoquinolines exhibit toxicological activity that varied from very high to low against nymphs and adults of Aphis gossypii, some compounds showing activity near to that of acetampirid and only one compound which possesses higher activity against nymphs and adults of Aphis gossypii than that of acetampirid itself.
Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/toxicidade , Isoquinolinas , Nitrilas/química , PiridinasRESUMO
In the title mol-ecule, C25H28N2O5S, (alternative name ethyl 2-{[7-acetyl-4-cyano-6-hy-droxy-8-(4-meth-oxy-phen-yl)-1,6-dimethyl-5,6,7,8-tetra-hydro-isoquinolin-3-yl]sulfanyl}-acetate) the 4-meth-oxy-phenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the ac plane is generated by O-Hâ¯O and C-Hâ¯O hydrogen bonds plus C-Hâ¯π(ring) inter-actions.
RESUMO
Regioselective cyclocondensation of 2,4-diacetyl-5-hydroxy-5-methyl-3-(3-nitrophenyl/4-nitrophenyl)cyclohexanones 1a,b with cyanothioacetamide afforded the corresponding 7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3- and -4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones 2a,b. Reaction of compounds 2a,b with ethyl iodide, 2-chloroacetamide (4a), or its N-aryl derivatives 4b-e in the presence of sodium acetate trihydrate gave 3-ethylthio-5,6,7,8-tetrahydroisoquinoline 3 and (5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetamides 5a-i, respectively. Cyclization of compounds 5b-d,f,g into their isomeric 1-amino-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamides 6b-d,f,g was achieved by heating in ethanol containing a catalytic amount of sodium carbonate. Structures of all synthesized compounds were characterized on the basis of their elemental analyses and spectroscopic data. The crystal structure of 5,6,7,8-tetrahydroisoquinoline 5d was determined by X-ray diffraction analysis. In addition, the biological evaluation of some synthesized compounds as anticancer agents was performed, and only six compounds showed moderate to strong activity against PACA2 (pancreatic cancer cell line) and A549 (lung carcinoma cell line). Moreover, the antioxidant properties of most synthesized compounds were examined. The results revealed high antioxidant activity for the most tested compounds.
RESUMO
The asymmetric unit of the title compound, C25H21N3O2S, comprises four mol-ecules. Their conformations differ primarily in the orientations of the styryl and the N-phenyl-carboxamido groups. In the crystal, inter-molecular N-Hâ¯N, C-Hâ¯O and C-Hâ¯S hydrogen-bonding contacts as well a C-Hâ¯π(ring) inter-actions lead to the formation of a layer structure parallel to (010). Hirshfeld surface analysis revealed that Hâ¯H inter-actions represent the main contributions to the crystal packing.
RESUMO
The starting compounds 7-acetyl-8-aryl-4-cyano-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinoline(2H)-3-thiones 3a,b were synthesized and reacted with some N-aryl-2-chloroacetamides 4a-e in the presence of sodium acetate to produce 7-acetyl-8-aryl-3-(N-arylcarbamoylmethylsulfanyl)-4-cyano-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinolines 5a-g. Upon heating in ethanol containing sodium ethoxide, they underwent intramolecular Thorpe-Zeigler cyclization, affording the corresponding 7-acetyl-1-amino-6-aryl-2-(N-arylcarbamoyl)-5,8-dimethyl-8-hydroxy-6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines 6a-g. Compounds 6c,g,f were converted into the corresponding 1-(1-pyrrolyl) derivatives 7a-c by heating with 2,5-dimethoxytetrahydrofuran in glacial acetic acid. Structures of all synthesized compounds were characterized by elemental and spectral analyses. Also, the crystal structure of compounds 5a was determined by X-ray diffraction analysis.
RESUMO
7-Acetyl-8-aryl-4-cyano-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinolin-3(2H)-thiones 2a,b are prepared and dehydrated to give 7-acetyl-8-aryl-4-cyano-1,6-dimethyl-6-hydroxy-7,8-dihydrodroisoquinolin-3(2H)-thiones 6a,b via a novel method by heating with acetyl chloride in acetic acid. The reaction of both compounds 2a,b and 6a,b with N-aryl-2-chloroacetamides 7a-c under two different conditions gave the same corresponding products, 7-acetyl-8-aryl-3-(N-aryl)carbamoylmethylsulfanyl-4-cyano-1,6-dimethyl-7,8-dihydroisoquinolines 8a-e, in high yields. On treatment of compounds 8a,b,e in methanol with a slightly excess molar amount of sodium methoxide, they underwent intramolecular Thorpe-Ziegler cyclization followed by spontaneous aromatization, providing the planar 7-acetyl-1-amino-6-aryl-2-(N-aryl)carbamoyl-5,8-dimethyl-8,9-dihydrothieno[2,3-c] isoquinolines 9a,b,e in good yield. Cyclocondensation reactions of 6a,b with phenyl hydrazine, thiosemicarbazide, or hydrazine hydrate led to the formation of nonplanar (3aR, 4S, 9aS)-pyrazolo[3,4-g]isoquinolines 11a, 11b, and 13, respectively. The reaction of compound 13 with 2-chloromethylquinazolin-4(3H)-one in the presence of anhydrous sodium acetate gave the expected thienopyrazoloisoquinolone 14. Heating the latter compound (14) with triethyl orthoformate in glacial acetic acid afforded the fused heptacyclic compound 15. All of the synthesized compounds were characterized based on their full spectral analyses such as IR, 1H nuclear magnetic resonance (NMR), and mass spectrometry (MS). Moreover, the crystal structure of compound 6a was elucidated by X-ray diffraction analysis.
RESUMO
In the title mol-ecule, C28H27N3O3S, the heterocyclic portion of the tetra-hydro-iso-quinoline unit is planar and an intra-molecular N-Hâ¯N hydrogen bond and a C-Hâ¯π(ring) inter-action help to determine the overall conformation. In the crystal, a layer structure with the layers parallel to (10) is generated by O-Hâ¯O and C-Hâ¯O hydrogen bonds.
RESUMO
In the title mol-ecule, C28H25Cl2N3O3S, the heterocyclic portion of the tetra-hydro-iso-quinoline unit is planar while the cyclo-hexene ring adopts a twist-boat conformation. The two 4-chloro-phenyl groups extend away from one side of this unit while the hydroxyl and acetyl groups extend away from the opposite side and form an intra-molecular O-Hâ¯O hydrogen bond. The crystal packing consists of layers parallel to the bc plane. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from Hâ¯H (37.3%), Clâ¯H/Hâ¯Cl (17.6%), Oâ¯H/Hâ¯O (11.1%), Câ¯H/Hâ¯C (10.9%) and Nâ¯H/Hâ¯N (9.7%) inter-actions.