Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 239, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801464

RESUMO

The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid ß-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.


Assuntos
Peptídeos beta-Amiloides , Encéfalo , Angiopatia Amiloide Cerebral , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Animais , Peptídeos beta-Amiloides/metabolismo , Sistema Glinfático/metabolismo , Sistema Glinfático/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia
2.
J Magn Reson Imaging ; 59(2): 431-449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37141288

RESUMO

Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Humanos , Cidade de Roma , Encéfalo/patologia , Líquido Extracelular , Meninges
3.
Int J Hyperthermia ; 41(1): 2354435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754976

RESUMO

INTRODUCTION: Psoriasis is characterized by an increase in the proliferation of keratinocytes and nerve fiber activity, contributing to the typical skin lesions. Pulsed Dye Laser (PDL) treatment is effective for the treatment of psoriatic lesions but its mechanism remains unclear. One hypothesis is that PDL causes thermal damage by the diffusion of heat to neighboring structures in lesional skin. There is limited information on the thermal sensitivity of these neighboring skin cells when exposed to hyperthermia for durations lasting less than a minute. Our study aimed to investigate the cell-specific responses to heat using sub-minute exposure times and moderate to ablative hyperthermia. MATERIALS AND METHODS: Cultured human endothelial cells, smooth muscle cells, neuronal cells, and keratinocytes were exposed to various time (2-20 sec) and temperature (45-70 °C) combinations. Cell viability was assessed by measuring intracellular ATP content 24 h after thermal exposure and this data was used to calculate fit parameters for the Arrhenius model and CEM43 calculations. RESULTS: Our results show significant differences in cell survival between cell types (p < 0.0001). Especially within the range of 50-60 °C, survival of neuronal cells and keratinocytes was significantly less than that of endothelial and smooth muscle cells. No statistically significant difference was found in the lethal dose (LT50) of thermal energy between neuronal cells and keratinocytes. However, CEM43 calculations showed significant differences between all four cell types. CONCLUSION: The results imply that there is a cell-type-dependent sensitivity to thermal damage which suggests that neuronal cells and keratinocytes are particularly susceptible to diffusing heat from laser treatment. Damage to these cells may aid in modulating the neuro-inflammatory pathways in psoriasis. These data provide insight into the potential mechanisms of PDL therapy for psoriasis and advance our understanding of how thermal effects may play a role in its effectiveness.


Assuntos
Queratinócitos , Pele , Humanos , Pele/patologia , Pele/efeitos da radiação , Pele/lesões , Sobrevivência Celular/efeitos da radiação
4.
Physiology (Bethesda) ; 37(6): 0, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881783

RESUMO

This review focuses on the physiology of glymphatic solute transport and waste clearance, using evidence from experimental animal models as well as from human studies. Specific topics addressed include the biophysical characteristics of fluid and solute transport in the central nervous system, glymphatic-lymphatic coupling, as well as the role of cerebrospinal fluid movement for brain waste clearance. We also discuss the current understanding of mechanisms underlying increased waste clearance during sleep.


Assuntos
Sistema Glinfático , Animais , Encéfalo/fisiologia , Sistema Nervoso Central , Sistema Glinfático/fisiologia , Humanos , Sono
5.
J Neurochem ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36802053

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1ß and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.

6.
NMR Biomed ; : e5029, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658736

RESUMO

Cerebrospinal fluid (CSF) has historically been considered to function as a sink for brain-derived waste disposal. Recent work suggested that CSF interacts even more intensely with brain tissue than previously recognized, through perivascular spaces that penetrate the brain. Cardiac pulsations, vasomotion, and respiration have been suggested to drive CSF flow in these perivascular spaces, thereby enhancing waste clearance. However, the intrinsic role of CSF production in relation to its distribution volume (turnover) is not an explicit component of recent concepts on brain clearance. Here, we review the work on CSF turnover and volume, focusing on preclinical evidence. Herein, we highlight the use of MRI in establishing CSF-related parameters. We describe the impact of sleep, effect of anesthesia, aging, and hypertension on CSF turnover, and how this relates to brain clearance. Evaluation of the available evidence suggests that CSF turnover is a major determinant in brain clearance. In addition, we propose that several putative drivers of brain clearance, but also conditions associated with impaired clearance, such as aging, may actually relate to altered CSF turnover.

7.
Microvasc Res ; 148: 104515, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893583

RESUMO

Microinfarcts result in a transient loss of the blood-brain barrier (BBB) in the ischemic territory. This leads to the extravasation of blood proteins into the brain parenchyma. It is not clear how these proteins are removed. Here we studied the role of perivascular spaces in brain clearance from extravasated blood proteins. Male and female Wistar rats were infused with microspheres of either 15, 25, or 50 µm in diameter (n = 6 rats per group) via the left carotid artery. We infused either 25,000 microspheres of 15 µm, 5500 of 25 µm, or 1000 of 50 µm. One day later, rats were infused with lectin and hypoxyprobe to label perfused blood vessels and hypoxic areas, respectively. Rats were then euthanized and perfusion-fixed. Brains were excised, sectioned, and analyzed using immunostaining and confocal imaging. Microspheres induced a size-dependent increase in ischemic volume per territory, but the cumulative ischemic volume was similar in all groups. The total volumes of ischemia, hypoxia and infarction affected 1-2 % of the left hemisphere. Immunoglobulins (IgG) were present in ischemic brain tissue surrounding lodged microspheres in all groups. In addition, staining for IgG was found in perivascular spaces of blood vessels nearby areas of BBB disruption. About 2/3 of these vessels were arteries, while the remaining 1/3 of these vessels were veins. The subarachnoid space (SAS) of the affected hemisphere stained stronger for IgG than the contralateral hemisphere in all groups: +27 %, +44 % and +27 % respectively. Microspheres of various sizes induce a local loss of BBB integrity, evidenced by parenchymal IgG staining. The presence of IgG in perivascular spaces of both arteries and veins distinct from the ischemic territories suggests that both contribute to the removal of blood proteins. The strong staining for IgG in the SAS of the affected hemisphere suggests that this perivascular route egresses via the CSF. Perivascular spaces therefore play a previously unrecognized role in tissue clearance of fluid and extravasated proteins after BBB disruption induced by microinfarcts.


Assuntos
Barreira Hematoencefálica , Encéfalo , Ratos , Masculino , Feminino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Wistar , Encéfalo/irrigação sanguínea , Imunoglobulina G/metabolismo , Proteínas Sanguíneas
8.
Exp Dermatol ; 32(7): 1165-1173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083107

RESUMO

Pulsed dye laser (PDL) therapy can be effective in treating psoriasis, with a long duration of remission. Although PDL therapy, albeit on a modest scale, is being used for decades now, the underlying mechanisms responsible for the long-term remission of psoriasis remain poorly understood. The selective and rapid absorption of energy by the blood causes heating of the vascular wall and surrounding structures, like perivascular nerves. Several studies indicate the importance of nerves in psoriatic inflammation. Interestingly, denervation leads to a spontaneous remission of the psoriatic lesion. Among all dermal nerves, the perivascular nerves are the most likely to be affected during PDL treatment, possibly impairing the neuro-inflammatory processes that promote T-cell activation, expression of adhesion molecules, leukocyte infiltration and cytokine production. Repeated PDL therapy could cause a prolonged loss of innervation through nerve damage, or result in a 'reset' of neurogenic inflammation after temporary denervation. The current hypothesis provides strong arguments that PDL treatment affects nerve fibres in the skin and thereby abrogates the persistent and exaggerated inflammatory process underlying psoriasis, causing a long-term remission of psoriasis.


Assuntos
Lasers de Corante , Terapia com Luz de Baixa Intensidade , Psoríase , Humanos , Lasers de Corante/uso terapêutico , Resultado do Tratamento , Psoríase/patologia , Pele/patologia
9.
J Stroke Cerebrovasc Dis ; 30(6): 105739, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33765634

RESUMO

OBJECTIVES: Endovascular treatment (EVT) has become the standard of care for acute ischemic stroke. Despite successful recanalization, a limited subset of patients benefits from the new treatment. Human MRI studies have shown that during removal of the thrombus, a shower of microclots is released from the initial thrombus, possibly causing new ischemic lesions. The aim of the current study is to quantify tissue damage following microembolism. MATERIALS AND METHODS: In a rat model, microembolism was generated by injection of a mixture of polystyrene fluorescent microspheres (15, 25 and 50 µm in diameter). The animals were killed at three time-points: day 1, 3 or 7. AMIRA and IMARIS software was used for 3D reconstruction of brain structure and damage, respectively. CONCLUSIONS: Microembolism induces ischemia, hypoxia and infarction. Infarcted areas persist, but hypoxic regions recover over time suggesting that repair processes in the brain rescue the regions at risk.


Assuntos
Infarto Encefálico/etiologia , Isquemia Encefálica/etiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Hipóxia Encefálica/etiologia , Embolia Intracraniana/complicações , Oxigênio/sangue , Animais , Infarto Encefálico/sangue , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/sangue , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipóxia Encefálica/sangue , Hipóxia Encefálica/patologia , Hipóxia Encefálica/fisiopatologia , Embolia Intracraniana/sangue , Embolia Intracraniana/patologia , Embolia Intracraniana/fisiopatologia , Masculino , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
10.
Stroke ; 50(6): 1590-1594, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31136287

RESUMO

Background and Purpose- We developed a rat model of silent brain infarcts based on microsphere infusion and investigated their impact on perfusion and tissue damage. Second, we studied the extent and mechanisms of perfusion recovery. Methods- At day 0, 15 µm fluorescent microspheres were injected into the right common carotid artery of F344 rats. At days 1, 7, or 28, the brain was removed, cut in 100-µm cryosections, and processed for immunofluorescent staining and analysis. Results- Injection of microspheres caused mild and transient damage to the treated hemisphere, with a decrease in perfused capillary volume at day 1, as compared with the untreated hemisphere. At day 1 but not at days 7 and 28, we observed IgG staining outside of the vessels, indicating vessel leakage. All microspheres were located inside the lumen of the vessels at day 1, whereas the vast majority (≈80%) of the microspheres were extravascular at day 7, and 100% at day 28. This was accompanied by restoration of perfused capillary volume. Conclusions- Microspheres cause mild and transient damage, and effective extravasation mechanisms exist in the brain to clear microsized emboli from the vessels.


Assuntos
Infarto Encefálico , Microesferas , Animais , Infarto Encefálico/induzido quimicamente , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos F344
11.
Exp Physiol ; 104(7): 1013-1017, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30582766

RESUMO

NEW FINDINGS: What is the topic of this review? In this symposium report, we review the glymphatic clearance from the brain. What advances does it highlight? Evaluation of the evidence indicates that cerebrospinal fluid flows along paravascular spaces at the surface of the brain. However, bulk flow along penetrating arteries into the brain, followed by exit along veins, requires further confirmation. Clearance from the brain, based on mixing, might provide an alternative explanation for experimental findings. ABSTRACT: The interstitial fluid of the brain provides the environment for proper neuronal function. Maintenance of the volume and composition of interstitial fluid requires regulation of the influx and removal of water, ions, nutritive and waste products. The recently described glymphatic pathway might contribute to some of these functions. It is proposed that cerebrospinal fluid enters the brain via paravascular spaces along arteries, mixes with interstitial fluid, and leaves the brain via paravascular spaces along veins. In this symposium report, we review the glymphatic concept, its concerns, and alternative views on interstitial fluid-cerebrospinal fluid exchange.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Líquido Extracelular/fisiologia , Sistema Glinfático/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Hipertensão/fisiopatologia
12.
Microsc Microanal ; 23(1): 77-87, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228173

RESUMO

Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/patologia , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Imageamento Tridimensional/métodos , Isquemia/diagnóstico por imagem , Isquemia/patologia , Animais , Arteríolas/diagnóstico por imagem , Arteríolas/patologia , Molde por Corrosão , Resinas Epóxi , Técnicas Histológicas/métodos , Ligadura , Masculino , Metilmetacrilatos/química , Ratos , Ratos Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 310(11): H1486-93, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26968543

RESUMO

Thrombospondin-4 (TSP-4) is a multidomain calcium-binding protein that has both intracellular and extracellular functions. As an extracellular matrix protein, it is involved in remodeling processes. Previous work showed that, in the cardiovascular system, TSP-4 expression is induced in the heart in response to experimental pressure overload and infarction injury. Intracellularly, it mediates the endoplasmic reticulum stress response in the heart. In this study, we explored the role of TSP-4 in hypertension. For this purpose, wild-type and TSP-4 knockout (Thbs4(-/-)) mice were treated with angiotensin II (ANG II). Hearts from ANG II-treated Thbs4(-/-) mice showed an exaggerated hypertrophic response. Interestingly, aortas from Thbs4(-/-) mice treated with ANG II showed a high incidence of aneurysms. In resistance arteries, ANG II-treated wild-type mice showed impaired endothelial-dependent relaxation. This was not observed in ANG II-treated Thbs4(-/-) mice or in untreated controls. No differences were found in the passive pressure-diameter curves or stress-strain relationships, although ANG II-treated Thbs4(-/-) mice showed a tendency to be less stiff, associated with thicker diameters of the collagen fibers as revealed by electron microscopy. We conclude that TSP-4 plays a role in hypertension, affecting cardiac hypertrophy, aortic aneurysm formation, as well as endothelial-dependent relaxation in resistance arteries.


Assuntos
Aneurisma Aórtico/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Artérias Mesentéricas/metabolismo , Trombospondinas/deficiência , Resistência Vascular , Vasodilatação , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Colágeno/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/ultraestrutura , Predisposição Genética para Doença , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Artérias Mesentéricas/ultraestrutura , Camundongos Knockout , Microscopia Eletrônica , Fenótipo , Trombospondinas/genética , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
Cell Mol Neurobiol ; 36(2): 181-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26993512

RESUMO

The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (Aß). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer's disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that Aß is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of Aß in the glia limitans in Alzheimer's disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of Aß. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Circulação Cerebrovascular , Linfa/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/líquido cefalorraquidiano
16.
J Vasc Res ; 52(2): 103-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26184661

RESUMO

Vasospasm is known to contribute to delayed cerebral ischemia following subarachnoid hemorrhage (SAH). We hypothesized that vasospasm initiates structural changes within the vessel wall, possibly aggravating ischemia and leading to resistance to vasodilator treatment. We therefore investigated the effect of blood on cerebral arteries with respect to contractile activation and vascular remodeling. In vitro experiments on rodent basilar and middle cerebral arteries showed a gradual contraction in response to overnight exposure to blood. After incubation with blood, a clear inward remodeling was found, reducing the caliber of the passive vessel. The transglutaminase inhibitor L682.777 fully prevented this remodeling. Translation of the in vitro findings to an in vivo SAH model was attempted in rats, using both a single prechiasmatic blood injection model and a double cisterna magna injection model, and in mice, using a single prechiasmatic blood injection. However, we found no substantial changes in active or passive biomechanical properties in vivo. We conclude that extravascular blood can induce matrix remodeling in cerebral arteries, which reduces vascular caliber. This remodeling depends on transglutaminase activity. However, the current rodent SAH models do not permit in vivo confirmation of this mechanism.


Assuntos
Artéria Cerebral Média/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Remodelação Vascular , Vasoespasmo Intracraniano/fisiopatologia , Animais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/enzimologia , Artéria Cerebral Média/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos Wistar , Fluxo Sanguíneo Regional , Hemorragia Subaracnóidea/enzimologia , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/patologia , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética , Transglutaminases/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição , Vasoespasmo Intracraniano/enzimologia , Vasoespasmo Intracraniano/genética , Vasoespasmo Intracraniano/patologia
17.
J Vasc Res ; 50(5): 383-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23988702

RESUMO

Inward remodeling of small arteries occurs after prolonged vasoconstriction, low blood flow, and in several models of hypertension. The cross-linking enzyme, transglutaminases 2 (TG2), is able to induce inward remodeling and stiffening of arteries. The activity of TG2 is dependent on its conformation, which can be open or closed, and on its redox state. Several factors have been shown to be involved in modulating TG2 activity, including Ca(2+) and GTP/GDP concentrations, as well as the redox state of the environment. This review introduces the hypothesis that mechanical force could be involved in regulating the activity of TG2 during inward remodeling by promoting its open and reduced active state. Several aspects of TG2, such as its structure and localization, are assessed in order to provide arguments that support the hypothesis. We conclude that a direct activation of TG2 by mechanical force exerted by smooth muscle cells may explain the link between smooth muscle activation and inward remodeling, as observed in several physiological and pathological conditions.


Assuntos
Artérias/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Animais , Artérias/fisiologia , Cálcio/metabolismo , Adesão Celular/fisiologia , Dissulfetos/metabolismo , Ativação Enzimática , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Camundongos , Músculo Liso/citologia , Músculo Liso/fisiologia , Conformação Proteica/efeitos dos fármacos , Proteína 2 Glutamina gama-Glutamiltransferase , Estresse Mecânico , Talina/metabolismo , Transglutaminases/antagonistas & inibidores , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Vinculina/metabolismo
18.
J Vasc Res ; 50(3): 249-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23839207

RESUMO

Small artery remodeling may involve a shift in the diameter-dependent force generating capacity of smooth muscle cells (SMC). We tested to what extent and under which conditions such contractile plasticity occurs. Rat mesenteric arteries were mounted on isometric myographs. Active diameter-tension relations were determined after application of several stimuli for 16 or 40 h at 40 or 110% of the passive diameter at 100 mm Hg. At 40%, 16-hour incubation with endothelin-1 (ET-1) but not U46619 shifted force capacity towards smaller diameters. Inflammatory cytokines (TNF-α, IL-1ß, IFN-γ), TGF-ß or serum neither induced such shift nor augmented the effect of ET-1. The ET-1-mediated change was not affected by superoxide dismutase and catalase. Inward matrix remodeling in the presence of ET-1 was slower, occurring after 40 h. Arteries maintained at 110% showed a shift of force capacity to larger diameters, which was prevented by ET-1 but not by U46619. In the active but not the passive state, SMC had altered nuclear lengths after incubation at 40%. These data demonstrate contractile plasticity in small arteries, where chronic strain is an outward drive and specifically ET-1 an inward drive, acting through mechanisms that do not seem to relate to oxidative stress, inflammatory pathways or major reorganization of the SMC.


Assuntos
Citocinas/farmacologia , Artérias Mesentéricas/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Vasoconstritores/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Núcleo Celular/ultraestrutura , Endotelina-1/farmacologia , Inflamação , Masculino , Artérias Mesentéricas/anatomia & histologia , Músculo Liso Vascular/ultraestrutura , Estresse Oxidativo , Ratos , Ratos Wistar
19.
Clin Sci (Lond) ; 124(12): 719-28, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23330684

RESUMO

Increasing evidence shows that sex hormones exert a protective effect on the vasculature, especially in the regulation of the active vasomotor responses. However, whether sex hormones affect vascular remodelling is currently unclear. In the present study, we tested the hypothesis that testosterone in males and ß-oestradiol in females prevent inward remodelling, possibly through inhibition of cross-linking activity induced by enzymes of the TG (transglutaminase) family. Small mesenteric arteries were isolated from male and female Wistar rats. Dose-dependent relaxation to testosterone and ß-oestradiol was inhibited by the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester), confirming that these hormones induce NO release. When arteries were cannulated, pressurized and kept in organ culture with ET-1 (endothelin-1) for 3 days we observed strong vasoconstriction and inward remodelling. Remodelling was significantly inhibited by testosterone in males, and by ß-oestradiol in females. This preventive effect of sex hormones was not observed in the presence of L-NAME. Inward remodelling was also reduced by the inhibitor of TG L682.777, both in males and females. In arteries from female rats, ET-1 increased TG activity, and this effect was prevented by ß-oestradiol. L-NAME induced a significant increase in TG activity in the presence of sex hormones in arteries from both genders. We conclude that testosterone and ß-oestradiol prevent constriction-induced inward remodelling. Inward remodelling, both in males and females, depends on NO and TG activity. In females, inhibition of inward remodelling could be mediated by NO-mediated inhibition of TG activity.


Assuntos
Estradiol/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Testosterona/farmacologia , Transglutaminases/metabolismo , Animais , Relação Dose-Resposta a Droga , Endotelina-1/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/patologia , Miografia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Transglutaminases/antagonistas & inibidores , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
20.
Drug Deliv ; 30(1): 2194579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36994503

RESUMO

Drug development for neurological diseases is greatly impeded by the presence of the blood-brain barrier (BBB). We and others previously reported on extravasation of micrometer-sized particles from the cerebral microcirculation - across the BBB - into the brain tissue over the course of several weeks. This mechanism could potentially be used for sustained parenchymal drug delivery after extravasation of biodegradable microspheres. As a first step toward this goal, we set out to evaluate the extravasation potential in the rat brain of three classes of biodegradable microspheres with drug-carrying potential, having a median diameter of 13 µm (80% within 8-18 µm) and polyethylene glycol concentrations of 0%, 24% and 36%. Extravasation, capillary recanalization and tissue damage were determined in a rat cerebral microembolization model at day 14 after microsphere injection. Microspheres of all three classes had the potential to extravasate from the vessel into the brain parenchyma, with microspheres without polyethylene glycol extravasating the fastest. Microembolization with biodegradable microspheres led to impaired local capillary perfusion, which was substantially restored after bead extravasation. We did not observe overt tissue damage after microembolization with any microsphere: we found very limited BBB disruption (IgG extravasation), no microgliosis (Iba1 staining) and no large neuronal infarctions (NeuN staining). In conclusion, biodegradable microspheres with different polymer compositions can extravasate into the brain parenchyma while causing minimal tissue damage.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Ratos , Animais , Microesferas , Polietilenoglicóis , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA