Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2302087120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844248

RESUMO

We utilize a coupled economy-agroecology-hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government's social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel-based CO2 emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.

2.
Proc Natl Acad Sci U S A ; 111(38): 13799-804, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201962

RESUMO

There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.


Assuntos
Dióxido de Carbono , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Marketing , Modelos Biológicos , Modelos Econômicos , África , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA