Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 246(4): 673-685, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28631209

RESUMO

MAIN CONCLUSION: Exogenous phenylalanine stunted annual ryegrass but not switchgrass or winter grain rye, with deuterium incorporation up to 3% from phenyalanine-d 8 . Toxicity to duckweed varied with illumination intensity and glucose uptake. Isotopic labeling of biomolecules through biosynthesis from deuterated precursors has successfully been employed for both structural studies and metabolic analysis. Phenylalanine is the precursor of many products synthesized by plants, including the monolignols used for synthesis of lignin. Possible allelochemical effects of phenylalanine have not been reported, although its deamination product cinnamic acid is known to have deleterious effects on root elongation and growth of several plant species. The effects of phenylalanine and its deuterated analog phenylalanine-d 8 added to growth media were studied for annual ryegrass (Lolium multiflorum), winter grain rye (Secale cereale), and switchgrass (Panicum virgatum) cultivated under hydroponic conditions. Growth of annual ryegrass was inhibited by phenylalanine while switchgrass and rye were not significantly affected. Growth was less affected by deuterated phenylalanine-d 8 than by its protiated counterpart, which may be a typical deuterium kinetic isotope effect resulting in slower enzymatic reaction rates. Deuterium incorporation levels of 2-3% were achieved in biomass of switchgrass and annual ryegrass. Both protiated and deuterated phenylalanine were moderately toxic (IC25 values 0.6 and 0.8 mM, respectively) to duckweed (Lemna minor) grown using a 12 h diurnal cycle under photoautotrophic conditions. A significant increase in toxicity, greater for the deuterated form, was noted when duckweed was grown under higher intensity, full spectrum illumination with a metal halide lamp compared to fluorescent plant growth lamps emitting in the blue and red spectral regions. Supplementation with glucose increased toxicity of phenylalanine consistent with synergy between hexose and amino acid uptake that has been reported for duckweed.


Assuntos
Araceae/efeitos dos fármacos , Deutério/metabolismo , Lolium/efeitos dos fármacos , Panicum/efeitos dos fármacos , Fenilalanina/toxicidade , Secale/efeitos dos fármacos , Alelopatia , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biomassa , Germinação , Glucose/metabolismo , Hidroponia , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Fenilalanina/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Secale/crescimento & desenvolvimento , Secale/metabolismo
2.
Planta ; 242(1): 215-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896375

RESUMO

MAIN CONCLUSION: The bioenergy crop switchgrass was grown hydroponically from tiller cuttings in 50 % D 2 O to obtain biomass with 34 % deuterium substitution and physicochemical properties similar to those of H 2 O-grown switchgrass controls. Deuterium enrichment of biological materials can potentially enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50 % D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by (1)H- and (2)H-NMR. This capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.


Assuntos
Deutério/metabolismo , Hidroponia/métodos , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Biomassa , Celulose/isolamento & purificação , Cristalização , Peso Molecular , Perfusão , Folhas de Planta/anatomia & histologia , Polissacarídeos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Inorg Chem ; 49(4): 1524-34, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20085265

RESUMO

The reaction of Mn(II) and KCN in aqueous and non-aqueous media leads to the isolation of three-dimensional (3-D) Prussian blue analogues, K(2)Mn[Mn(CN)(6)] (1a-d, 1e, respectively). Use of RbCN forms Rb(2)Mn[Mn(CN)(6)] (2). 1 and 2 are isomorphic {monoclinic, P2(1)/n: 1 [a = 10.1786(1) A, b = 7.4124(1) A, c = 6.9758(1) A, beta = 90.206(1)(o)]; 2 [a = 10.4101(1) A, b = 7.4492(1) A, c = 7.2132(1) A, beta = 90.072(1)(o)]}, with a small monoclinic distortion from the face centered cubic (fcc) structure that is typical of Prussian blue structured materials that was previously reported for K(2)Mn[Mn(CN)(6)]. Most notably the average Mn-N-C angles are 148.8 degrees and 153.3 degrees for 1 and 2, respectively, which are significantly reduced from linearity. This is attributed to the ionic nature of high spin Mn(II) accommodating a reduced M-CN-M' angle and minimizing void space. Compounds 1a,b have a sharp, strong nu(OH) band at 3628 cm(-1), while 1e lacks a nu(OH) absorption. The nu(OH) absorption in 1a,b is attributed to surface water, as use of D(2)O shifts the nu(OH) absorption to 2677 cm(-1), and that 1a-e are isostructural. Also, fcc Prussian blue-structured Cs(2)Mn[Mn(CN)(6)] (3) has been structurally [Fm3m: a = 10.6061(1) A] and magnetically characterized. The magnetic ordering temperature, T(c), increases as K(+) (41 K) > Rb(+) (34.6 K) > Cs(+) (21 K) for A(2)Mn[Mn(CN)(6)] in accord with the increasing deviation for linearity of the Mn-N-C linkages [148.8 (K(+)) > 153.3 (Rb(+)) > 180 degrees (Cs(+))], decreasing Mn(II)...Mn(II) separations [5.09 (K(+)) < 5.19 (Rb(+)) < 5.30 A (Cs(+))], and decreasing size of the cation (increasing electrostatic interactions). Hence, the bent cyanide bridges play a crucial role in the superexchange mechanism by increasing the coupling via shorter Mn(II)...Mn(II) separations, and perhaps enhanced overlap. In addition, the temperature dependent magnetic behavior of K(4)[Mn(II)(CN)(6)].3H(2)O is reported.

4.
Sci Rep ; 8(1): 13226, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185812

RESUMO

Neutron scattering of deuterated plants can provide fundamental insight into the structure of lignocellulosics in plant cell walls and its deconstruction by pretreatment and enzymes. Such plants need to be characterized for any alterations to lignocellulosic structure caused by growth in deuterated media. Here we show that glucose yields from enzymatic hydrolysis at lower enzyme loading were 35% and 30% for untreated deuterated and protiated switchgrass, respectively. Lignin content was 4% higher in deuterated switchgrass but there were no significant lignin structural differences. Transmission electron microscopy showed differences in lignin distribution and packing of fibers in the cell walls that apparently increased surface area of cellulose in deuterated switchgrass, increasing cellulose accessibility and lowering its recalcitrance. These differences in lignification were likely caused by abiotic stress due to growth in deuterated media.


Assuntos
Lignina/metabolismo , Panicum/enzimologia , Deutério/metabolismo , Glucose/metabolismo , Hidrólise , Lignina/ultraestrutura , Panicum/metabolismo , Panicum/ultraestrutura
5.
Front Plant Sci ; 9: 1669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568662

RESUMO

A greater understanding of biosynthesis, signaling and regulatory pathways involved in determining stem growth and secondary cell wall chemistry is important for enabling pathway engineering and genetic optimization of biomass properties. The present study describes a new functional role of PdIQD10, a Populus gene belonging to the IQ67-Domain1 family of IQD genes, in impacting biomass formation and chemistry. Expression studies showed that PdIQD10 has enhanced expression in developing xylem and tension-stressed tissues in Populus deltoides. Molecular dynamics simulation and yeast two-hybrid interaction experiments suggest interactions with two calmodulin proteins, CaM247 and CaM014, supporting the sequence-predicted functional role of the PdIQD10 as a calmodulin-binding protein. PdIQD10 was found to interact with specific Populus isoforms of the Kinesin Light Chain protein family, shown previously to function as microtubule-guided, cargo binding and delivery proteins in Arabidopsis. Subcellular localization studies showed that PdIQD10 localizes in the nucleus and plasma membrane regions. Promoter-binding assays suggest that a known master transcriptional regulator of secondary cell wall biosynthesis (PdWND1B) may be upstream of an HD-ZIP III gene that is in turn upstream of PdIQD10 gene in the transcriptional network. RNAi-mediated downregulation of PdIQD10 expression resulted in plants with altered biomass properties including higher cellulose, wall glucose content and greater biomass quantity. These results present evidence in support of a new functional role for an IQD gene family member, PdIQD10, in secondary cell wall biosynthesis and biomass formation in Populus.

6.
ChemSusChem ; 10(1): 139-150, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27882723

RESUMO

In an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13 C  solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons' stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg g-1biomass as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31 P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.


Assuntos
Biocombustíveis , Biomassa , Populus/química , Biotecnologia , Celulose/química , Hidrólise , Lignina/química , Polimerização , Populus/crescimento & desenvolvimento
7.
Front Plant Sci ; 7: 1455, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757116

RESUMO

A greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-ß-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristics of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.

8.
ChemSusChem ; 8(2): 275-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25421020

RESUMO

The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2 ). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose and exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.


Assuntos
Celulose/química , Adsorção , Amônia/química , Compostos de Cálcio/química , Corantes/química , Glucose/química , Concentração de Íons de Hidrogênio , Hidrólise , Óxidos/química , Populus/química
9.
J Agric Food Chem ; 62(12): 2595-604, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24640947

RESUMO

The development of deuterated biomass is essential for effective neutron scattering studies on biomass, which can provide key insights into the complex biomass conversion processes. A method for optimized production of deuterated annual ryegrass (Lolium multiflorum) was developed by growing the plants in 50% D2O in perfused hydroponic chambers. Deuterium incorporation of 36.9% was found in the annual rye grown in 50% D2O. Further, deuterium incorporation of 60% was achieved by germinating the rye seedlings in H2O and growing in 50% D2O inside the perfusion chambers. The characteristics related to enzymatic hydrolysis such as biomass composition, degree of polymerization, and cellulose crystallinity were compared with its control protiated counterpart. The cellulose molecular weight indicated slight variation while hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration.


Assuntos
Celulose/química , Deutério/metabolismo , Lolium/crescimento & desenvolvimento , Biomassa , Celulose/metabolismo , Hidroponia , Lolium/química , Lolium/metabolismo
10.
Carbohydr Res ; 374: 82-8, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23651632

RESUMO

In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and (2)H and (1)H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85% deuterium incorporation. Acetylation and (1)H and (2)H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation no significant differences in the molecular and morphological properties were observed for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.


Assuntos
Celulose/química , Deutério/química , Gluconacetobacter/química , Configuração de Carboidratos , Celulose/biossíntese , Gluconacetobacter/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA