Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 24(14): 1491-1504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35166627

RESUMO

Aridity and salinity limit sustainable biomass production and agricultural practices in desert areas. The capability of halophytes plantation with wind deposits containing around 10% gypsum was evaluated for reclamation of saline soil and its effect on the production of Sorghum bicolar L., in an arid area. Two substance treatments at concentrations of 25 and 50 ton ha-1 gypsum and wind deposits at levels of 85 and 170 ton ha-1 were applied. Biological treatments were applied using halophyte plantation as a pioneer species. Sorghum was cultivated for all substance treatments and the production of sorghum was determined for the different treatments. Results indicated that the method leads to a reduction of salinity from 139 to <4 dS m-1 and SAR declined from 129.6 to 6.2 after a period of 15 months. The performance of wind deposits used in these experiments was higher than pure gypsum to reclaim saline soils. Maximum production of sorghum has been obtained by the treatment of 85 ton ha-1 wind deposit. Results indicated land reclamation and biomass production of forage seems possible when using wind deposit in the study area and therefore the wind deposit can effectively be used for reclamation of saline soil and plant production in arid environments.


This study evaluated the efficiency and environmental benefits of halophyte plantations incorporated with wind deposits resulting from wind erosion for saline-sodic soil reclamation. This approach illustrated the capability of the method as an eco-friendly and inexpensive method for biomass production in arid regions for the first time. The appropriate halophyte plants and optimum amount of wind deposit were evaluated in comparison to gypsum amendment for saline-sodic soil reclamation and biomass production.


Assuntos
Solo , Sorghum , Plantas Tolerantes a Sal , Vento , Sulfato de Cálcio , Irã (Geográfico) , Biodegradação Ambiental , Solução Salina
2.
New Phytol ; 224(1): 166-176, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209882

RESUMO

Information on the onset of leaf senescence in temperate deciduous trees and comparisons on its assessment methods are limited, hampering our understanding of autumn dynamics. We compare five field proxies, five remote sensing proxies and two data analysis approaches to assess leaf senescence onset at one main beech stand, two stands of oak and birch, and three ancillary stands of the same species in Belgium during 2017 and 2018. Across species and sites, onset of leaf senescence was not significantly different for the field proxies based on Chl leaf content and canopy coloration, except for an advanced canopy coloration during the extremely dry and warm 2018. Two remote sensing indices provided results fully consistent with the field data. A significant lag emerged between leaf senescence onset and leaf fall, and when a threshold of 50% change in the seasonal variable under study (e.g. Chl content) was used to derive the leaf senescence onset. Our results provide unprecedented information on the quality and applicability of different proxies to assess leaf senescence onset in temperate deciduous trees. In addition, a sound base is offered to select the most suited methods for the different disciplines that need this type of data.


Assuntos
Florestas , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo
3.
Sci Total Environ ; 822: 153380, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35077786

RESUMO

European mountain grasslands are increasingly affected by land-use changes and climate, which have been suggested to exert important controls on grassland carbon (C) and nitrogen (N) pools. However, so far there has been no synthetic study on whether and how land-use changes and climate interactively affect the partitioning of these pools amongst the different grassland compartments. We analyzed the partitioning of C and N pools of 36 European mountain grasslands differing in land-use and climate with respect to above- and belowground phytomass, litter and topsoil (top 23 cm). We found that a reduction of management intensity and the abandonment of hay meadows and pastures increased above-ground phytomass, root mass and litter as well as their respective C and N pools, concurrently decreasing the fractional contribution of the topsoil to the total organic carbon pool. These changes were strongly driven by the cessation of cutting and grazing, a shift in plant functional groups and a related reduction in litter quality. Across all grasslands studied, variation in the impact of land management on the topsoil N pool and C/N-ratio were mainly explained by soil clay content combined with pH. Across the grasslands, below-ground phytomass as well as phytomass- and litter C concentrations were inversely related to the mean annual temperature; furthermore, C/N-ratios of phytomass and litter increased with decreasing mean annual precipitation. Within the topsoil compartment, C concentrations decreased from colder to warmer sites, and increased with increasing precipitation. Climate generally influenced effects of land use on C and N pools mainly through mean annual temperature and less through mean annual precipitation. We conclude that site-specific conditions need to be considered for understanding the effects of land use and of current and future climate changes on grassland C and N pools.


Assuntos
Carbono , Nitrogênio , Pradaria , Nitrogênio/análise , Plantas , Solo/química
4.
Sensors (Basel) ; 11(8): 7954-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164055

RESUMO

This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903-"Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe" that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.


Assuntos
Monitoramento Ambiental/métodos , Óptica e Fotônica , Radiometria/métodos , Biofísica/métodos , Calibragem , Clima , Mudança Climática , Conservação dos Recursos Naturais , Análise Custo-Benefício , Ecossistema , Processamento Eletrônico de Dados , Europa (Continente) , Cooperação Internacional , Luz , Reprodutibilidade dos Testes , Inquéritos e Questionários , Fatores de Tempo
5.
Sci Rep ; 6: 28269, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301671

RESUMO

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.


Assuntos
Secas , Tecnologia de Sensoriamento Remoto , Florestas , França , Fotossíntese
6.
Int J Remote Sens ; 33(7)2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24347746

RESUMO

This article examines the possibility of exploiting ground reflectance in the near-infrared (NIR) for monitoring grassland phytomass on a temporal basis. Three new spectral vegetation indices (infrared slope index, ISI; normalized infrared difference index, NIDI; and normalized difference structural index, NDSI), which are based on the reflectance values in the H25 (863-881 nm) and the H18 (745-751 nm) Chris Proba (mode 5) bands, are proposed. Ground measurements of hyperspectral reflectance and phytomass were made at six grassland sites in the Italian and Austrian mountains using a hand-held spectroradiometer. At full canopy cover, strong saturation was observed for many traditional vegetation indices (normalized difference vegetation index (NDVI), modified simple ratio (MSR), enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI 2), renormalized difference vegetation index (RDVI), wide dynamic range vegetation index (WDRVI)). Conversely, ISI and NDSI were linearly related to grassland phytomass with negligible inter-annual variability. The relationships between both ISI and NDSI and phytomass were however site specific. The WinSail model indicated that this was mostly due to grassland species composition and background reflectance. Further studies are needed to confirm the usefulness of these indices (e.g. using multispectral specific sensors) for monitoring vegetation structural biophysical variables in other ecosystem types and to test these relationships with aircraft and satellite sensors data. For grassland ecosystems, we conclude that ISI and NDSI hold great promise for non-destructively monitoring the temporal variability of grassland phytomass.

7.
Ecosystems ; 11(8): 1352-1367, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20936099

RESUMO

Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R(s)) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R(s) (R(s(max) )), R(s) at a reference soil temperature (10°C; R(s(10) )) and annual R(s) (estimated for 13 sites) ranged from 1.9 to 15.9 µmol CO(2) m(-2) s(-1), 0.3 to 5.5 µmol CO(2) m(-2) s(-1) and 58 to 1988 g C m(-2) y(-1), respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites R(s(max) ) was closely related to R(s(10) ).Assimilate supply affected R(s) at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R(s). Temperature-independent seasonal fluctuations of R(s) of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites R(s(10) ) increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R(s) was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R(s) across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO(2) emissions at various timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA