Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1006615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619385

RESUMO

Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local chondrocyte spatial organisation. Using atomic force microscopy, we measured the Young's modulus of the local ECM and PCM in human and bovine disc samples using the spatial chondrocyte patterns as an image-based biomarker. By measuring tissue from 31 patients and six bovine samples, we found a significant difference in the elastic moduli (E) of the PCM in clusters when compared to the healthy patterns single cells (p = 0.029), pairs (p = 0.016), and string-formations (p = 0.010). The ECM/PCM ratio ranged from 0.62-0.89. Interestingly, in the bovine IVD, the ECM/PCM ratio of the E significantly varied (p = 0.002) depending on the tissue origin. Overall the reduced E in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Immunohistochemical analyses indicate that collagen type III degradation might be involved. This study is the first to describe and quantify the differences in the E of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation.

2.
Nutrients ; 10(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470389

RESUMO

Regular walnut consumption is associated with better health. We have previously shown that eight weeks of walnut consumption (43 g/day) significantly improves lipids in healthy subjects. In the same study, gut microbiome was evaluated. We included 194 healthy subjects (134 females, 63 ± 7 years, BMI 25.1 ± 4.0 kg/m²) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (eight weeks each); 96 subjects first followed a walnut-enriched diet (43 g/day) and then switched to a nut-free diet, while 98 subjects followed the diets in reverse order. While consuming the walnut-enriched diet, subjects were advised to either reduce fat or carbohydrates or both to account for the additional calories. Fecal samples were collected from 135 subjects at the end of the walnut-diet and the control-diet period for microbiome analyses. The 16S rRNA gene sequencing data was clustered with a 97% similarity into Operational Taxonomic Units (OTUs). UniFrac distances were used to determine diversity between groups. Differential abundance was evaluated using the Kruskal-Wallis rank sum test. All analyses were performed using Rhea. Generalized UniFrac distance shows that walnut consumption significantly affects microbiome composition and diversity. Multidimensional scaling (metric and non-metric) indicates dissimilarities of approximately 5% between walnut and control (p = 0.02). The abundance of Ruminococcaceae and Bifidobacteria increased significantly (p < 0.02) while Clostridium sp. cluster XIVa species (Blautia; Anaerostipes) decreased significantly (p < 0.05) during walnut consumption. The effect of walnut consumption on the microbiome only marginally depended on whether subjects replaced fat, carbohydrates or both while on walnuts. Daily intake of 43 g walnuts over eight weeks significantly affects the gut microbiome by enhancing probiotic- and butyric acid-producing species in healthy individuals. Further evaluation is required to establish whether these changes are preserved during longer walnut consumption and how these are linked to the observed changes in lipid metabolism.


Assuntos
Bactérias/crescimento & desenvolvimento , Dieta , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Juglans , Nozes , Prebióticos/administração & dosagem , População Branca , Idoso , Bactérias/classificação , Bactérias/metabolismo , Ácido Butírico/metabolismo , Estudos Cross-Over , Dieta/efeitos adversos , Fezes/microbiologia , Feminino , Alemanha , Voluntários Saudáveis , Humanos , Juglans/efeitos adversos , Masculino , Pessoa de Meia-Idade , Nozes/efeitos adversos , Prebióticos/efeitos adversos , Estudos Prospectivos , Ribotipagem , Fatores de Tempo , Resultado do Tratamento
3.
Nutrients ; 9(10)2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984822

RESUMO

Studies indicate a positive association between walnut intake and improvements in plasma lipids. We evaluated the effect of an isocaloric replacement of macronutrients with walnuts and the time point of consumption on plasma lipids. We included 194 healthy subjects (134 females, age 63 ± 7 years, BMI 25.1 ± 4.0 kg/m²) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (8 weeks each). Ninety-six subjects first followed a walnut-enriched diet (43 g walnuts/day) and then switched to a nut-free diet. Ninety-eight subjects followed the diets in reverse order. Subjects were also randomized to either reduce carbohydrates (n = 62), fat (n = 65), or both (n = 67) during the walnut diet, and instructed to consume walnuts either as a meal or as a snack. The walnut diet resulted in a significant reduction in fasting cholesterol (walnut vs. CONTROL: -8.5 ± 37.2 vs. -1.1 ± 35.4 mg/dL; p = 0.002), non-HDL cholesterol (-10.3 ± 35.5 vs. -1.4 ± 33.1 mg/dL; p ≤ 0.001), LDL-cholesterol (-7.4 ± 32.4 vs. -1.7 ± 29.7 mg/dL; p = 0.029), triglycerides (-5.0 ± 47.5 vs. 3.7 ± 48.5 mg/dL; p = 0.015) and apoB (-6.7 ± 22.4 vs. -0.5 ± 37.7; p ≤ 0.001), while HDL-cholesterol and lipoprotein (a) did not change significantly. Neither macronutrient replacement nor time point of consumption significantly affected the effect of walnuts on lipids. Thus, 43 g walnuts/d improved the lipid profile independent of the recommended macronutrient replacement and the time point of consumption.


Assuntos
Dieta , Juglans , Lipídeos/sangue , Refeições , Nozes , População Branca , Idoso , Biomarcadores/sangue , Estudos Cross-Over , Dieta com Restrição de Carboidratos , Regulação para Baixo , Feminino , Alemanha , Voluntários Saudáveis , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recomendações Nutricionais , Lanches , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA