Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Respir Res ; 24(1): 3, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604658

RESUMO

BACKGROUND: Allergic asthma is associated with airflow obstruction and hyper-responsiveness that arises from airway inflammation and remodeling. Cell therapy with mesenchymal stem cells (MSC) has been shown to attenuate inflammation in asthma models, and similar effects have recently been observed using extracellular vesicles (EV) obtained from these cells. Biologically functional vesicles can also be artificially generated from MSC by extruding cells through membranes to produce EV-mimetic nanovesicles (NV). In this study, we aimed to determine the effects of different MSC-derived vesicles in a murine model of allergic airway inflammation. METHODS: EV were obtained through sequential centrifugation of serum-free media conditioned by human bone marrow MSC for 24 h. NV were produced through serial extrusion of the whole cells through filters. Both types of vesicles underwent density gradient purification and were quantified through nanoparticle tracking analysis. C57BL/6 mice were sensitized to ovalbumin (OVA, 8 µg), and then randomly divided into the OVA group (intranasally exposed to 100 µg OVA for 5 days) and control group (exposed to PBS). The mice were then further divided into groups that received 2 × 109 EV or NV (intranasally or intraperitoneally) or PBS immediately following the first OVA exposure. RESULTS: Administration of EV and NV reduced cellularity and eosinophilia in bronchoalveolar lavage (BAL) fluid in OVA-sensitized and OVA-exposed mice. In addition, NV treatment resulted in decreased numbers of inflammatory cells within the lung tissue, and this was associated with lower levels of Eotaxin-2 in both BAL fluid and lung tissue. Furthermore, both intranasal and systemic administration of NV were effective in reducing inflammatory cells; however, systemic delivery resulted in a greater reduction of eosinophilia in the lung tissue. CONCLUSIONS: Taken together, our results indicate that MSC-derived NV significantly reduce OVA-induced allergic airway inflammation to a level comparable to EV. Thus, cell-derived NV may be a novel EV-mimetic therapeutic candidate for treating allergic diseases such as asthma.


Assuntos
Asma , Eosinofilia , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Imunoglobulina E , Camundongos Endogâmicos C57BL , Asma/terapia , Asma/tratamento farmacológico , Pulmão , Líquido da Lavagem Broncoalveolar , Inflamação , Ovalbumina/toxicidade , Camundongos Endogâmicos BALB C
2.
Respir Res ; 19(1): 104, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843724

RESUMO

BACKGROUND: Silicosis is an occupational disease that affects workers who inhale silica particles, leading to extensive lung fibrosis and ultimately causing respiratory failure. Mesenchymal stromal cells (MSCs) have been shown to exert therapeutic effects in lung diseases and represent an alternative treatment for silicosis. Recently, it has been suggested that similar effects can be achieved by the therapeutic use of extracellular vesicles (EVs) obtained from MSCs. The aim of this study was to investigate the effects of adipose-tissue-derived MSCs (AD-MSCs) or their EVs in a model of silicosis. METHODS: Silicosis was induced by intratracheal instillation of silica in C57BL/6 mice. After the onset of disease, animals received saline, AD-MSCs, or EVs, intratracheally. RESULTS: At day 30, AD-MSCs and EVs led to a reduction in collagen fiber content, size of granuloma, and in the number of macrophages inside granuloma and in the alveolar septa. In addition, the expression levels of interleukin 1ß and transforming growth factor beta in the lungs were decreased. Higher dose of EVs also reduced lung static elastance when compared with the untreated silicosis group. CONCLUSIONS: Both AD-MSCs and EVs, locally delivered, ameliorated fibrosis and inflammation, but dose-enhanced EVs yielded better therapeutic outcomes in this model of silicosis.


Assuntos
Tecido Adiposo/transplante , Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Dióxido de Silício/toxicidade , Silicose/terapia , Tecido Adiposo/citologia , Animais , Feminino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Silicose/patologia , Resultado do Tratamento
3.
Nanomedicine ; 13(2): 765-770, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989853

RESUMO

We present a method that takes advantage of the fluorophore loading dependence of fluorescence nanoparticle tracking (fNTA) to determine the content of specific miRNA targets in extracellular vesicles (EVs) and their stoichiometry across the entire EV population. The method is based on an assay for detecting EV miRNA by hybridization to fluorescently labeled, miRNA-specific molecular beacons encapsulated in cationic lipoplex nanoparticles that fuse non-specifically with negatively charged EVs. To demonstrate the method, we carry out a stoichiometric analysis of miR-21 in EVs released from A549 lung cancer cells. We find approximately 2.3% of the A549 EVs have an average copy number of ~44 miR-21/A549 EV and contain at least a threshold number of 33 miR-21 copies/A549 EV required for fluorescence tracking. Potential applications of sizing, enumerating, and phenotyping EVs using this method include specifying dosages for therapeutic applications and identifying specific EV subpopulations in patient samples for diagnostic applications.


Assuntos
Fluorescência , MicroRNAs/farmacocinética , Nanopartículas , Vesículas Extracelulares , Corantes Fluorescentes , Humanos , Neoplasias Pulmonares , Fenótipo , Coloração e Rotulagem , Células Tumorais Cultivadas
4.
Respir Res ; 15: 118, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25272959

RESUMO

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento
5.
Sci Rep ; 10(1): 15328, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948789

RESUMO

Pulmonary sarcoidosis has unknown etiology, a difficult diagnostic procedure and no curative treatment. Extracellular vesicles including exosomes are nano-sized entities released from all cell types. Previous studies of exosomes from bronchoalveolar lavage fluid (BALF) of sarcoidosis patients have revealed pro-inflammatory components and abilities, but cell sources and mechanisms have not been identified. In the current study, we found that BALF exosomes from sarcoidosis patients, but not from healthy individuals, induced a dose-dependent elevation of intracellular IL-1ß in monocytes. Analyses of supernatants showed that patient exosomes also induced release of IL-1ß, IL-6 and TNF from both PBMCs and enriched monocytes, suggesting that the observed effect is direct on monocytes. The potently chemotactic chemokine CCL2 was induced by exosomes from a subgroup of patients, and in a blocking assay the exosome-induced CCL2 was reduced for 13 out of 19 patients by the asthma drug Montelukast, a cysteinyl leukotriene receptor antagonist. Further, reactive oxygen species generation by PBMCs was induced to a higher degree by patient exosomes compared to healthy exosomes. These findings add to an emerging picture of exosomes as mediators and disseminators of inflammation, and open for further investigations of the link between CCL2 and exosomal leukotrienes in sarcoidosis.


Assuntos
Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Exossomos/metabolismo , Monócitos/metabolismo , Sarcoidose Pulmonar/patologia , Acetatos/farmacologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Ciclopropanos/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/patologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia
6.
Stem Cell Res Ther ; 10(1): 288, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547882

RESUMO

After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.


Assuntos
Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
7.
Stem Cell Res Ther ; 10(1): 231, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370884

RESUMO

BACKGROUND: Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved. METHODS: NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging. RESULTS: Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h. CONCLUSIONS: Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.


Assuntos
Membrana Externa Bacteriana/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-10/metabolismo , Nanoestruturas/química , Sepse/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Endocitose , Escherichia coli/metabolismo , Vesículas Extracelulares/química , Interleucina-10/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/metabolismo , Peritônio/patologia , Proteoma/análise , Células RAW 264.7 , Sepse/patologia , Distribuição Tecidual
8.
Sci Rep ; 7(1): 17434, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234030

RESUMO

Sepsis induced cardiac dysfunction (SIC) is a severe complication to sepsis which significantly worsens patient outcomes. It is known that bacteria have the capacity to release outer membrane vesicles (OMVs), which are nano-sized bilayered vesicles composed of lipids and proteins, that can induce a fatal inflammatory response. The aim of this study was to determine whether OMVs from a uropathogenic Escherichia coli strain can induce cardiac dysfunction, and to elucidate any mechanisms involved. OMVs induced irregular Ca2+ oscillations with a decreased frequency in cardiomyocytes through recordings of intracellular Ca2+ dynamics. Mice were intraperitoneally injected with bacteria-free OMVs, which resulted in increased concentration of pro-inflammatory cytokine levels in blood. Cytokines were increased in heart lysates, and OMVs could be detected in the heart after OMVs injection. Troponin T was significantly increased in blood, and echocardiography showed increased heart wall thickness as well as increased heart rate. This study shows that E. coli OMVs induce cardiac injury in vitro and in vivo, in the absence of bacteria, and may be a causative microbial signal in SIC. The role of OMVs in clinical disease warrant further studies, as bacterial OMVs in addition to live bacteria may be good therapeutic targets to control sepsis.


Assuntos
Micropartículas Derivadas de Células/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Cardiopatias/imunologia , Sepse/imunologia , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Micropartículas Derivadas de Células/efeitos dos fármacos , Citocinas/metabolismo , Infecções por Escherichia coli/diagnóstico por imagem , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Cardiopatias/diagnóstico por imagem , Cardiopatias/tratamento farmacológico , Cardiopatias/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Miocárdio/imunologia , Miocárdio/patologia , Polimixina B/farmacologia , Distribuição Aleatória , Sepse/diagnóstico por imagem , Sepse/tratamento farmacológico , Sepse/patologia , Troponina T/sangue
9.
Stem Cells Transl Med ; 6(6): 1557-1567, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28425576

RESUMO

Mesenchymal stromal cells (MSCs) from different sources have differential effects on lung injury. To compare the effects of murine MSCs from bone marrow (BM), adipose tissue (AD), and lung tissue (LUNG) on inflammatory and remodeling processes in experimental allergic asthma, female C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) or saline (C). Twenty-four hours after the last challenge, mice received either saline (50 µl, SAL), BM-MSCs, AD-MSCs, or LUNG-MSCs (105 cells per mouse in 50 µl total volume) intratracheally. At 1 week, BM-MSCs produced significantly greater reductions in resistive and viscoelastic pressures, bronchoconstriction index, collagen fiber content in lung parenchyma (but not airways), eosinophil infiltration, and levels of interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß, and vascular endothelial growth factor (VEGF) in lung homogenates compared to AD-MSCs and LUNG-MSCs. Only BM-MSCs increased IL-10 and interferon (IFN)-γ in lung tissue. In parallel in vitro experiments, BM-MSCs increased M2 macrophage polarization, whereas AD-MSCs and LUNG-MSCs had higher baseline levels of IL-4, insulin-like growth factor (IGF), and VEGF secretion. Exposure of MSCs to serum specimens obtained from asthmatic mice promoted reductions in secretion of these mediators, particularly in BM-MSCs. Intratracheally administered BM-MSCs, AD-MSCs, and LUNG-MSCs were differentially effective at reducing airway inflammation and remodeling and improving lung function in the current model of allergic asthma. In conclusion, intratracheal administration of MSCs from BM, AD, and LUNG were differentially effective at reducing airway inflammation and remodeling and improving lung function comparably reduced inflammation and fibrogenesis in this asthma model. However, altered lung mechanics and lung remodeling responded better to BM-MSCs than to AD-MSCs or LUNG-MSCs. Moreover, each type of MSC was differentially affected in a surrogate in vitro model of the in vivo lung environment. Stem Cells Translational Medicine 2017;6:1557-1567.


Assuntos
Asma/terapia , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/metabolismo , Feminino , Pulmão/citologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos Endogâmicos C57BL , Traqueia/citologia
10.
Stem Cells Int ; 2016: 5091838, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066079

RESUMO

Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis.

11.
Front Physiol ; 7: 151, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199766

RESUMO

Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases.

12.
Respir Physiol Neurobiol ; 187(2): 190-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548824

RESUMO

We compared the effects of bone marrow-derived mononuclear cells (BMMCs) and mesenchymal stromal cells (MSCs) on airway inflammation and remodeling and lung mechanics in experimental allergic asthma. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA group). A control group received saline using the same protocol. Twenty-four hours after the last challenge, groups were further randomized into subgroups to receive saline, BMMCs (2×10(6)) or MSCs (1×10(5)) intratracheally. BMMC and MSC administration decreased cell infiltration, bronchoconstriction index, alveolar collapse, collagen fiber content in the alveolar septa, and interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß and vascular endothelial growth factor (VEGF) levels compared to OVA-SAL. Lung function, alveolar collapse, collagen fiber deposition in alveolar septa, and levels of TGF-ß and VEGF improved more after BMMC than MSC therapy. In conclusion, intratracheal BMMC and MSC administration effectively modulated inflammation and fibrogenesis in an experimental model of asthma, but BMMCs was associated with greater benefit in terms of reducing levels of fibrogenesis-related growth factors.


Assuntos
Asma/patologia , Células da Medula Óssea/patologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise de Variância , Animais , Antígenos CD/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA