Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467710

RESUMO

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Assuntos
Catecolaminas/metabolismo , Cromogranina A/fisiologia , Cromograninas/metabolismo , Nicotina/farmacologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Cromogranina A/farmacologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/farmacologia , Ratos , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Cell Tissue Res ; 368(3): 487-501, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28220294

RESUMO

Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In ß-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in ß-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO ß-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient ß-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of ß-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.


Assuntos
Cromogranina A/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Dinâmica Mitocondrial , Animais , Calreticulina/metabolismo , Diferenciação Celular , Cromogranina A/deficiência , Cromogranina A/metabolismo , Exocitose , Regulação da Expressão Gênica , Glucose/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/genética , Fragmentos de Peptídeos/metabolismo , Vesículas Secretórias
3.
Cell Tissue Res ; 363(3): 693-712, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572539

RESUMO

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.


Assuntos
Catecolaminas/metabolismo , Grânulos Cromafim/metabolismo , Cromogranina A/deficiência , Metabolismo Energético , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Western Blotting , Grânulos Cromafim/efeitos dos fármacos , Grânulos Cromafim/ultraestrutura , Cromogranina A/metabolismo , Dopamina/metabolismo , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Epinefrina/metabolismo , Exocitose/efeitos dos fármacos , Glucose/metabolismo , Glicogênio/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Insulina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Norepinefrina/metabolismo , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
4.
J Biol Chem ; 287(27): 23141-51, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22535963

RESUMO

Chromogranin A knock-out (Chga-KO) mice display increased adiposity despite high levels of circulating catecholamines and leptin. Consistent with diet-induced obese mice, desensitization of leptin receptors caused by hyperleptinemia is believed to contribute to the obese phenotype of these KO mice. In contrast, obesity in ob/ob mice is caused by leptin deficiency. To characterize the metabolic phenotype, Chga-KO mice were treated with the CHGA-derived peptide catestatin (CST) that is deficient in these mice. CST treatment reduced fat depot size and increased lipolysis and fatty acid oxidation. In liver, CST enhanced oxidation of fatty acids as well as their assimilation into lipids, effects that are attributable to the up-regulation of genes promoting fatty acid oxidation (Cpt1α, Pparα, Acox, and Ucp2) and incorporation into lipids (Gpat and CD36). CST did not affect basal or isoproterenol-stimulated cAMP production in adipocytes but inhibited phospholipase C activation by the α-adrenergic receptor (AR) agonist phenylephrine, suggesting inhibition of α-AR signaling by CST. Indeed, CST mimicked the lipolytic effect of the α-AR blocker phentolamine on adipocytes. Moreover, CST reversed the hyperleptinemia of Chga-KO mice and improved leptin signaling as determined by phosphorylation of AMPK and Stat3. CST also improved peripheral leptin sensitivity in diet-induced obese mice. In ob/ob mice, CST enhanced leptin-induced signaling in adipose tissue. In conclusion, our results implicate CST in a novel pathway that promotes lipolysis and fatty acid oxidation by blocking α-AR signaling as well as by enhancing leptin receptor signaling.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Cromogranina A/farmacologia , Leptina/metabolismo , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Receptores Adrenérgicos alfa/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Catecolaminas/metabolismo , Cromogranina A/genética , Cromogranina A/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Cell Metab ; 6(5): 386-97, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17983584

RESUMO

Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Gorduras na Dieta/administração & dosagem , Metabolismo Energético , Citometria de Fluxo , Células-Tronco Hematopoéticas/enzimologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Resistência à Insulina , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Palmitatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Comput Struct Biotechnol J ; 18: 464-481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180905

RESUMO

Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA 352 - 372 ) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.

8.
Mol Metab ; 41: 101039, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32534258

RESUMO

OBJECTIVE: Recent evidence indicates that inhibition of prolyl hydroxylase domain (PHD) proteins can exert beneficial effects to improve metabolic abnormalities in mice and humans. However, the underlying mechanisms are not clearly understood. This study was designed to address this question. METHODS: A pan-PHD inhibitor compound was injected into WT and liver-specific hypoxia-inducible factor (HIF)-2α KO mice, after onset of obesity and glucose intolerance, and changes in glucose and glucagon tolerance were measured. Tissue-specific changes in basal glucose flux and insulin sensitivity were also measured by hyperinsulinemic euglycemic clamp studies. Molecular and cellular mechanisms were assessed in normal and type 2 diabetic human hepatocytes, as well as in mouse hepatocytes. RESULTS: Administration of a PHD inhibitor compound (PHDi) after the onset of obesity and insulin resistance improved glycemic control by increasing insulin and decreasing glucagon sensitivity in mice, independent of body weight change. Hyperinsulinemic euglycemic clamp studies revealed that these effects of PHDi treatment were mainly due to decreased basal hepatic glucose output and increased liver insulin sensitivity. Hepatocyte-specific deletion of HIF-2α markedly attenuated these effects of PHDi treatment, showing PHDi effects are HIF-2α dependent. At the molecular level, HIF-2α induced increased Irs2 and cyclic AMP-specific phosphodiesterase gene expression, leading to increased and decreased insulin and glucagon signaling, respectively. These effects of PHDi treatment were conserved in human and mouse hepatocytes. CONCLUSIONS: Our results elucidate unknown mechanisms for how PHD inhibition improves glycemic control through HIF-2α-dependent regulation of hepatic insulin and glucagon sensitivity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Insulina/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Resistência à Insulina/fisiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/metabolismo , Transdução de Sinais
9.
J Clin Invest ; 129(10): 4477-4491, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393851

RESUMO

Serine rich splicing factor 3 (SRSF3) plays a critical role in liver function and its loss promotes chronic liver damage and regeneration. As a consequence, genetic deletion of SRSF3 in hepatocytes caused progressive liver disease and ultimately led to hepatocellular carcinoma. Here we show that SRSF3 is decreased in human liver samples with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), or cirrhosis that was associated with alterations in RNA splicing of known SRSF3 target genes. Hepatic SRSF3 expression was similarly decreased and RNA splicing dysregulated in mouse models of NAFLD and NASH. We showed that palmitic acid-induced oxidative stress caused conjugation of the ubiquitin like NEDD8 protein to SRSF3 and proteasome mediated degradation. SRSF3 was selectively neddylated at lysine11 and mutation of this residue (SRSF3-K11R) was sufficient to prevent both SRSF3 degradation and alterations in RNA splicing. Finally prevention of SRSF3 degradation in vivo partially protected mice from hepatic steatosis, fibrosis and inflammation. These results highlight a neddylation-dependent mechanism regulating gene expression in the liver that is disrupted in early metabolic liver disease and may contribute to the progression to NASH, cirrhosis and ultimately hepatocellular carcinoma.


Assuntos
Hepatócitos/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteólise , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Hepatócitos/patologia , Fígado/patologia , Cirrose Hepática Experimental/patologia , Camundongos , Proteína NEDD8/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Processamento de Proteína Pós-Traducional
10.
Diabetes ; 67(5): 841-848, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29432123

RESUMO

The activation of Kupffer cells (KCs) and monocyte-derived recruited macrophages (McMΦs) in the liver contributes to obesity-induced insulin resistance and type 2 diabetes. Mice with diet-induced obesity (DIO mice) treated with chromogranin A peptide catestatin (CST) showed several positive results. These included decreased hepatic/plasma lipids and plasma insulin, diminished expression of gluconeogenic genes, attenuated expression of proinflammatory genes, increased expression of anti-inflammatory genes in McMΦs, and inhibition of the infiltration of McMΦs resulting in improvement of insulin sensitivity. Systemic CST knockout (CST-KO) mice on normal chow diet (NCD) ate more food, gained weight, and displayed elevated blood glucose and insulin levels. Supplementation of CST normalized glucose and insulin levels. To verify that the CST deficiency caused macrophages to be very proinflammatory in CST-KO NCD mice and produced glucose intolerance, we tested the effects of (sorted with FACS) F4/80+Ly6C- cells (representing KCs) and F4/80-Ly6C+ cells (representing McMΦs) on hepatic glucose production (HGP). Both basal HGP and glucagon-induced HGP were markedly increased in hepatocytes cocultured with KCs and McMΦs from NCD-fed CST-KO mice, and the effect was abrogated upon pretreatment of CST-KO macrophages with CST. Thus, we provide a novel mechanism of HGP suppression through CST-mediated inhibition of macrophage infiltration and function.


Assuntos
Cromogranina A/farmacologia , Glucose/metabolismo , Resistência à Insulina , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Obesidade/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Cromogranina A/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glucagon/farmacologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Hormônios/farmacologia , Inflamação/imunologia , Insulina/metabolismo , Células de Kupffer/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/imunologia , Fragmentos de Peptídeos/genética
11.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29504946

RESUMO

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Assuntos
Glicemia/metabolismo , Quimiocina CX3CL1/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Glicemia/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Quimiocina CX3CL1/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fragmentos Fc das Imunoglobulinas/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética
12.
Diabetes ; 55(8): 2277-85, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873691

RESUMO

Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase, and fatty acid transport proteins in muscle biopsies from nondiabetic lean, obese, and type 2 subjects before and after an euglycemic-hyperinsulinemic clamp as well as pre-and post-3-month rosiglitazone treatment. We observed that low AMPK and high ACC activities resulted in elevation of malonyl-CoA levels and lower fatty acid oxidation rates. These conditions, along with the basal higher expression levels of fatty acid transporters, led accumulation of long-chain fatty acyl-coA and triacylglycerol in insulin-resistant muscle. During the insulin infusion, muscle fatty acid oxidation was reduced to a greater extent in the lean compared with the insulin-resistant subjects. In contrast, isolated muscle mitochondria from the type 2 subjects exhibited a greater rate of fatty acid oxidation compared with the lean group. All of these abnormalities in the type 2 diabetic group were reversed by rosiglitazone treatment. In conclusion, these studies have shown that elevated malonyl-CoA levels and decreased fatty acid oxidation are key abnormalities in insulin-resistant muscle, and, in type 2 diabetic patients, thiazolidinedione treatment can reverse these abnormalities.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Malonil Coenzima A/análise , Obesidade/metabolismo , Tiazolidinedionas/uso terapêutico , Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase/análise , Acil Coenzima A/análise , Adulto , Carboxiliases/análise , Proteínas de Transporte de Ácido Graxo/análise , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Complexos Multienzimáticos/análise , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/química , Oxirredução , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Rosiglitazona , Triglicerídeos/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-28228748

RESUMO

Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.

14.
Artigo em Inglês | MEDLINE | ID: mdl-28439258

RESUMO

The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction in the absence of hypertension and coronary artery disease. Changes in substrate metabolism, oxidative stress, endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced glycation end products constitute the early stage in DCM. These early events are followed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed by apoptosis, changes in immune responses with a consequent increase in fibrosis, remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the body. Altered myocardial substrate and energy metabolism initiate the development of DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium handling with consequent alteration of relaxation-contraction dynamics leading to diastolic and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation-contraction coupling as Ca2+ is transported into the SR by the SERCA2a (sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardiomyocytes display decreased SERCA2a activity and leaky Ca2+ release channel resulting in reduced SR calcium load. The diabetic heart also suffers from marked downregulation of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune responses and substrate energy metabolism are critically altered in diabetes, the present review will focus on immunometabolism and miRNAs.

15.
J Endocrinol ; 232(2): 137-153, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27799464

RESUMO

Chromogranin A (CgA) is widely expressed in endocrine and neuroendocrine tissues as well as in the central nervous system. We observed CgA expression (mRNA and protein) in the gastrocnemius (GAS) muscle and found that performance of CgA-deficient Chga-KO mice in treadmill exercise was impaired. Supplementation with CgA in Chga-KO mice restored exercise ability suggesting a novel role for endogenous CgA in skeletal muscle function. Chga-KO mice display (i) lack of exercise-induced stimulation of pAKT, pTBC1D1 and phospho-p38 kinase signaling, (ii) loss of GAS muscle mass, (iii) extensive formation of tubular aggregates (TA), (iv) disorganized cristae architecture in mitochondria, (v) increased expression of the inflammatory cytokines Tnfα, Il6 and Ifnγ, and fibrosis. The impaired maximum running speed and endurance in the treadmill exercise in Chga-KO mice correlated with decreased glucose uptake and glycolysis, defects in glucose oxidation and decreased mitochondrial cytochrome C oxidase activity. The lack of adaptation to endurance training correlated with the lack of stimulation of p38MAPK that is known to mediate the response to tissue damage. As CgA sorts proteins to the regulated secretory pathway, we speculate that lack of CgA could cause misfolding of membrane proteins inducing aggregation of sarcoplasmic reticulum (SR) membranes and formation of tubular aggregates that is observed in Chga-KO mice. In conclusion, CgA deficiency renders the muscle energy deficient, impairs performance in treadmill exercise and prevents regeneration after exercise-induced tissue damage.


Assuntos
Cromogranina A/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Cromogranina A/genética , Cromogranina A/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Diabetes ; 54(8): 2351-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16046301

RESUMO

Insulin resistance is predominantly characterized by decreased insulin-stimulated glucose uptake into skeletal muscle. In the current study, we have assessed various aspects of the phosphatidylinositol (PI) 3-kinase pathway in skeletal muscle biopsies obtained from normal, obese nondiabetic, and type 2 diabetic subjects, before and after a 5-h insulin infusion. We found a highly significant inverse correlation between in vivo insulin sensitivity (as measured by the glucose infusion rate) and increased protein expression of p85/55/50, protein kinase C (PKC)-theta activity, levels of pSer307 insulin receptor substrate (IRS)-1 and p-Jun NH2-terminal kinase (JNK)-1, and myosin heavy chain IIx fibers. Increased basal phosphorylation of Ser307 IRS-1 in the obese and type 2 diabetic subjects corresponds with decrease in insulin-stimulated IRS-1 tyrosine phosphorylation, PI 3-kinase activity, and insulin-induced activation of Akt and, more prominently, PKC-zeta/lambda. In summary, increased expression of the PI 3-kinase adaptor subunits p85/55/50, as well as increased activity of the proinflammatory kinases JNK-1, PKC-theta, and, to a lesser extent, inhibitor of kappaB kinase-beta, are associated with increased basal Ser307 IRS-1 phosphorylation and decreased PI 3-kinase activity and may follow a common pathway to attenuate in vivo insulin sensitivity in insulin-resistant subjects. These findings demonstrate interacting mechanisms that can lead to impaired insulin-stimulated PI 3-kinase activity in skeletal muscle from obese and type 2 diabetic subjects.


Assuntos
Resistência à Insulina , Músculo Esquelético/enzimologia , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/análise , Adulto , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Ativação Enzimática , Glicólise , Humanos , Inflamação/enzimologia , Proteínas Substratos do Receptor de Insulina , Isoenzimas/metabolismo , Modelos Lineares , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Obesidade/enzimologia , Obesidade/patologia , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Diabetes ; 64(1): 104-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25048197

RESUMO

Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A-derived peptide pancreastatin (PST: CHGA(273-301)) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice. Concomitant with this phenotype is enhanced Akt and AMPK signaling in muscle and white adipose tissue (WAT) as well as increased FoxO1 phosphorylation and expression of mature Srebp-1c in liver and downregulation of the hepatic gluconeogenic genes, Pepck and G6pase. KO-DIO mice also exhibited downregulation of cytokines and proinflammatory genes and upregulation of anti-inflammatory genes in WAT, and peritoneal macrophages from KO mice displayed similarly reduced proinflammatory gene expression. The insulin-sensitive, anti-inflammatory phenotype of KO-DIO mice is masked by supplementing PST. Conversely, a PST variant peptide PSTv1 (PST-NΔ3: CHGA(276-301)), lacking PST activity, simulated the KO phenotype by sensitizing WT-DIO mice to insulin. In summary, the reduced inflammation due to PST deficiency prevented the development of insulin resistance in KO-DIO mice. Thus, obesity manifests insulin resistance only in the presence of PST, and in its absence obesity is dissociated from insulin resistance.


Assuntos
Cromogranina A/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Hormônios Pancreáticos/farmacologia , Paniculite/imunologia , Transdução de Sinais/imunologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Quimiotaxia/imunologia , Cromogranina A/genética , Cromogranina A/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Resistência à Insulina/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Hormônios Pancreáticos/imunologia , Hormônios Pancreáticos/metabolismo , Paniculite/tratamento farmacológico , Paniculite/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
18.
Endocrinology ; 155(10): 3793-805, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051446

RESUMO

Cigarette smoking causes insulin resistance. However, nicotine induces anti-inflammation and improves glucose tolerance in insulin-resistant animal models. Here, we determined the effects of nicotine on glucose metabolism in insulin-sensitive C57BL/J6 mice. Acute nicotine administration (30 min) caused fasting hyperglycemia and lowered insulin sensitivity acutely, which depended on the activation of nicotinic-acetylcholine receptors (nAChRs) and correlated with increased catecholamine secretion, nitric oxide (NO) production, and glycogenolysis. Chlorisondamine, an inhibitor of nAChRs, reduced acute nicotine-induced hyperglycemia. qRT-PCR analysis revealed that the liver and muscle express predominantly ß4 > α10 > α3 > α7 and ß4 > α10 > ß1 > α1 mRNA for nAChR subunits respectively, whereas the adrenal gland expresses ß4 > α3 > α7 > α10 mRNA. Chronic nicotine treatment significantly suppressed expression of α3-nAChR (predominant peripheral α-subunit) in liver. Whereas acute nicotine treatment raised plasma norepinephrine (NE) and epinephrine (Epi) levels, chronic nicotine exposure raised only Epi. Acute nicotine treatment raised both basal and glucose-stimulated insulin secretion (GSIS). After chronic nicotine treatment, basal insulin level was elevated, but GSIS after acute saline or nicotine treatment was blunted. Chronic nicotine exposure caused an increased buildup of NO in plasma and liver, leading to decreased glycogen storage, along with a concomitant suppression of Pepck and G6Pase mRNA, thus preventing hyperglycemia. The insulin-sensitizing effect of chronic nicotine was independent of weight loss. Chronic nicotine treatment enhanced PI-3-kinase activities and increased Akt and glycogen synthase kinase (GSK)-3ß phosphorylation in an nAChR-dependent manner coupled with decreased cAMP response element-binding protein (CREB) phosphorylation. The latter effects caused suppression of Pepck and G6Pase gene expression. Thus, nicotine causes both insulin resistance and insulin sensitivity depending on the duration of the treatment.


Assuntos
Glicemia/metabolismo , Hiperglicemia/induzido quimicamente , Resistência à Insulina , Nicotina/farmacologia , Receptores Nicotínicos/fisiologia , Animais , Células Cultivadas , Epinefrina/sangue , Homeostase/efeitos dos fármacos , Homeostase/genética , Hiperglicemia/genética , Hiperglicemia/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/sangue , Fatores de Tempo
19.
Adv Pharmacol ; 68: 93-113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24054141

RESUMO

Catecholamines (CAs) and granin peptides are costored in dense-core vesicles within the chromaffin cells of the adrenal medulla and in other endocrine organs and neurons. Granins play a major functional and structural role in chromaffin cells but are ubiquitous proteins, which are present also in secretory cells of the nervous, endocrine, and immune systems, where they regulate a number of cellular functions. Furthermore, recent studies also demonstrate that granin-derived peptides can functionally interact with CA to modulate key physiological functions such as lipolysis and blood pressure. In this chapter, we will provide a brief update on the interaction between CA and granins at the cellular and organ levels. We will first discuss recent data on the regulation of exocytosis of CA and peptides from the chromaffin cells by the sympathetic nervous system with a specific reference to the prominent role played by splanchnic nerve-derived pituitary adenylate cyclase-activating peptide (PACAP). Secondly, we will discuss the role of granins in the storage and regulation of exocytosis in large dense-core vesicles. Finally, we will provide an up-to-date review of the roles played by two granin-derived peptides, the chromogranin A-derived peptide catestatin and the VGF-derived peptide TLQP-21, on lipolysis and obesity. In conclusion, the knowledge gathered from recent findings on the role played by proteins/peptides in the sympathetic/target cell synapses, discussed in this chapter, would contribute to and provide novel mechanistic support for an increased appreciation of the physiological role of CA in human pathophysiology.


Assuntos
Tecido Adiposo/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Cromograninas/metabolismo , Animais , Cromogranina A/fisiologia , Humanos , Lipólise , Neuropeptídeos/fisiologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sistema Nervoso Simpático/fisiologia
20.
Am J Physiol Endocrinol Metab ; 289(6): E1015-22, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16030065

RESUMO

We show that Topiramate (TPM) treatment normalizes whole body insulin sensitivity in high-fat diet (HFD)-fed male Wistar rats. Thus drug treatment markedly lowered glucose and insulin levels during glucose tolerance tests and caused increased insulin sensitization in adipose and muscle tissues as assessed by euglycemic clamp studies. The insulin-stimulated glucose disposal rate increased twofold (indicating enhanced muscle insulin sensitivity), and suppression of circulating FFAs increased by 200 to 300%, consistent with increased adipose tissue insulin sensitivity. There were no effects of TPM on hepatic insulin sensitivity in these TPM-treated HFD-fed rats. In addition, TPM administration resulted in a three- to fourfold increase in circulating levels of total and high-molecular-weight (HMW) adiponectin (Acrp30). Western blot analysis revealed normal AMPK (Thr(172)) phosphorylation in liver with a twofold increased phospho-AMPK in skeletal muscle in TPM-treated rats. In conclusion, 1) TPM treatment prevents overall insulin resistance in HFD male Wistar rats; 2) drug treatment improved insulin sensitivity in skeletal muscle and adipose tissue associated with enhanced AMPK phosphorylation; and 3) the tissue "specific" effects are associated with increased serum levels of adiponectin, particularly the HMW component.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Gorduras na Dieta/administração & dosagem , Frutose/análogos & derivados , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/análise , Ácidos Graxos não Esterificados/sangue , Frutose/administração & dosagem , Técnica Clamp de Glucose , Insulina/sangue , Resistência à Insulina , Fígado/enzimologia , Masculino , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Topiramato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA