Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(16): 3595-3604, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31285097

RESUMO

Inspired by bioactive biaryl-containing natural products found in plants and the marine environment, a series of synthetic compounds belonging to the azaBINOL chiral ligand family was evaluated for antiviral activity against HIV-1. Testing of 39 unique azaBINOLs and two BINOLs in a single-round infectivity assay resulted in the identification of three promising antiviral compounds, including 7-isopropoxy-8-(naphth-1-yl)quinoline (azaBINOL B#24), which exhibited low-micromolar activity without associated cytotoxicity. The active compounds and several close structural analogues were further tested against three different HIV-1 envelope pseudotyped viruses as well as in a full-virus replication system (EASY-HIT). The in vitro studies indicated that azaBINOL B#24 acts on early stages of viral replication before viral assembly and budding. Next we explored B#24's activity against HIV-1 reverse transcriptase (RT) and individually tested for polymerase and RNase H activity. The azaBINOL B#24 inhibits RNase H activity and binds directly to the HIV-1 RT enzyme. Additionally, we observe additive inhibitory activity against pseudotyped viruses when B#24 is dosed in competition with the clinically used non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz. When tested against a multi-drug resistant HIV-1 isolate with drug resistance associated mutations in regions encoding for HIV-1 RT and protease, B#24 only exhibits a 5.1-fold net decrease in IC50 value, while efavirenz' activity decreases by 7.6-fold. These results indicate that azaBINOL B#24 is a potentially viable, novel lead for the development of new HIV-1 RNase H inhibitors. Furthermore, this study demonstrates that the survey of libraries of synthetic compounds, designed purely with the goal of facilitating chemical synthesis in mind, may yield unexpected and selective drug leads for the development of new antiviral agents.


Assuntos
Fármacos Anti-HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Quinolinas/uso terapêutico , Ribonuclease H/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Humanos , Quinolinas/farmacologia
2.
Org Biomol Chem ; 10(25): 4851-63, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22544220

RESUMO

The development of a proline sulphonamide-catalysed method for enantioselective and diastereoselective construction of functionalized cyclohexenones is described. Impact of catalyst structure as well as solvent effects and additives are explored. A significant substrate scope is demonstrated by variation of both the aldehyde and the enone components. Diastereoselective derivatization of the cyclohexenone scaffold illustrates its utility as a building block for chemical synthesis.


Assuntos
Sulfonamidas/química , Aldeídos/química , Catálise , Modelos Moleculares , Estrutura Molecular , Prolina/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA