Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2319436121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386712

RESUMO

Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.


Assuntos
Silicatos , Oligoelementos , Zea mays , Agricultura , Solo , Dióxido de Carbono , Glycine max
2.
Nature ; 583(7815): 242-248, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641817

RESUMO

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2-4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


Assuntos
Agricultura , Dióxido de Carbono/isolamento & purificação , Produtos Agrícolas , Sedimentos Geológicos/química , Aquecimento Global/prevenção & controle , Objetivos , Silicatos/química , Atmosfera/química , Brasil , China , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Aquecimento Global/economia , Índia , Ferro/isolamento & purificação , Mineração , Política , Probabilidade , Silicatos/isolamento & purificação , Aço/isolamento & purificação , Temperatura , Fatores de Tempo , Estados Unidos
3.
Environ Sci Technol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913808

RESUMO

Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.

4.
Environ Sci Technol ; 57(45): 17501-17510, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921659

RESUMO

The mobility of chromium (Cr) is controlled by minerals, especially iron (oxyhydr)oxides. The influence of organic carbon (OC) on the mobility and fate of Cr(VI) during Fe(II)-induced transformation of iron (oxyhydr)oxide, however, is still unclear. We investigate how low-weight carboxyl-rich OC influences the transformation of ferrihydrite (Fh) and controls the mobility of Cr(VI/III) in reducing environments and how Cr influences the formation of secondary Fe minerals and the stabilization of OC. With respect to the transformation of Fe minerals, the presence of low-weight carboxyl-rich OC retards the growth of goethite crystals and stabilizes lepidocrocite for a longer time. With respect to the mobility of Cr, low-weight carboxyl-rich OC suppresses the Cr(III)non-extractable associated with Fe minerals, and this suppression is enhanced with increasing carboxyl-richness of OC and decreasing pH. The presence of Cr(III) mitigates the decrease in total C associated with Fe minerals and increases the Cnon-extractable especially for Fh organominerals made with carboxyl-rich OC. Our study sheds new light on the mobility and fate of Cr in reducing environments and suggests that there is a potential synergy between Cr(VI) remediation and OC stabilization.


Assuntos
Carbono , Minerais , Oxirredução , Minerais/química , Compostos Férricos/química , Cromo/química , Ferro/química , Óxidos , Compostos Ferrosos
5.
Land Degrad Dev ; 33(14): 2635-2646, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36249122

RESUMO

Soil degradation remains a challenge in African highlands, where land management lacks a strong context-specific evidence base. We investigated the impacts of recently implemented soil and water conservation (SWC) practices-farmyard manure addition, incorporation of crop residues in soil and fanya juu terracing under an agroforestry system on soil health indicators in the East Usambara Mountains of Tanzania. Farmers' observations of soil changes were combined with conventional soil testing to assess the initial impacts of SWC practices relative to conventional non-SWC practice. Majority of farmers (66%-83%) reported that combining fanya juu terracing with organic amendments led to soil colour change from red to black and an increase in crop yield. Despite the observed darkening of the soil, there was no significant increase in soil organic carbon stock and the contents of N, P, K. There were important changes in soil physical properties, including greater aggregate stability (mean weight diameter of 1.51-1.71 mm) in the SWC plots, a greater volume of transmission pores (>60 µm) and coarse storage pores (10-60 µm) in the surface soil layer (0-15 cm), and greater volume of fine storage pores (0.2-10 µm) and residual pores (0.2 µm) in the sub-surface layer (15-30 cm) of the SWC plots compared with the conventional plots. These changes indicate that SWC rapidly enhances infiltration and retention of water within the root zone, which are important for increasing crop yields and improving the resilience of the agro-ecosystem to environmental stress. Combining SWC with effective soil fertility management is needed for sustainable highland agriculture.

6.
Langmuir ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347486

RESUMO

Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.

7.
Glob Chang Biol ; 26(6): 3658-3676, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314496

RESUMO

Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2 ) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal Sorghum bicolor under controlled environmental conditions, without accumulation of potentially toxic trace elements in the seeds. Yield increases resulted from the basalt treatment after 120 days without P- and K-fertilizer addition. Shoot silicon concentrations also increased significantly (26 ± 5.4%, SE), with potential benefits for crop resistance to biotic and abiotic stress. Elemental budgets indicate substantial release of base cations important for inorganic carbon removal and their accumulation mainly in the soil exchangeable pools. Geochemical reactive transport modelling, constrained by elemental budgets, indicated CO2 sequestration rates of 2-4 t CO2 /ha, 1-5 years after a single application of basaltic rock dust, including via newly formed soil carbonate minerals whose long-term fate requires assessment through field trials. This represents an approximately fourfold increase in carbon capture compared to control plant-soil systems without basalt. Our results build support for ERW deployment as a CDR technique compatible with spreading basalt powder on acidic loamy soils common across millions of hectares of western European and North American agriculture.


Assuntos
Solo , Sorghum , Agricultura , Dióxido de Carbono , Poeira , Grão Comestível , Silicatos
8.
Soil Tillage Res ; 201: 104639, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624633

RESUMO

Sub-Saharan Africa (SSA) faces climate change and food insecurity challenges, which require action to create resilient farming systems. Conservation agriculture (CA) is widely promoted across SSA but the impacts on key soil physical properties and functions such as soil structure and hydraulic properties that govern water storage and transmission are not well understood. The aim of this study was to assess the impacts of long term (10-12 years) maize-based CA on soil hydraulic conductivity, water retention and pore size distribution. Root zone (0-30 cm depth) soil total porosity, pore size distribution, saturated hydraulic conductivity (Ksat) and plant available water capacity (PAWC) of conventional maize monocrop farming systems (CP) are compared with those of adjacent CA trials with either sole maize or maize intercrop/rotation with cowpea (Vigna unguiculata L.), pigeon pea (Cajanus cajan L.) or velvet bean (Mucuna pruriens L) in trial locations across central and southern Malawi. Results show that maize-based CA systems result in significant changes to soil hydraulic properties that correlate with improved soil structure. Results demonstrate increases of 5-15 % in total porosity, 0.06-0.22 cm/min in Ksat, 3-7 % in fine pores for water storage and 3-6 % in PAWC. Maize monocrop CA had similar effect on the hydraulic properties as the maize-legume associations. The values of Ksat for CA systems were within optimum levels (0.03-0.3 cm/min) whereas PAWC was below optimum (<20 %). There was no significant build-up in soil organic matter (OM) in the CA systems. The results lead to a recommendation that crop residue management should be more pro-actively pursued in CA guidance from agricultural extension staff to increase soil OM levels, increase yields and enhance climate resilience of sub-Saharan African farming systems.

10.
Glob Chang Biol ; 24(4): 1488-1499, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266645

RESUMO

Earth's Critical Zone sustains terrestrial life and consists of the thin planetary surface layer between unaltered rock and the atmospheric boundary. Within this zone, flows of energy and materials are mediated by physical processes and by the actions of diverse organisms. Human activities significantly influence these physical and biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere, and biosphere. The role of organisms includes an additional class of biogeochemical cycling, this being the flow and transformation of genetic information. This is particularly the case for the microorganisms that govern carbon and nitrogen cycling. These biological processes are mediated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions. Understanding human effects on microbial activity, fitness and distribution is an important component of Critical Zone science, but is highly challenging to investigate across the enormous physical scales of impact ranging from individual organisms to the planet. One arena where this might be tractable is by studying the dynamics and dissemination of genes for antibiotic resistance and the organisms that carry such genes. Here we explore the transport and transformation of microbial genes and cells through Earth's Critical Zone. We do so by examining the origins and rise of antibiotic resistance genes, their subsequent dissemination, and the ongoing colonization of diverse ecosystems by resistant organisms.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Planeta Terra , Ecossistema , Humanos
11.
Nature ; 543(7645): 315, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300105
12.
Biol Lett ; 13(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28381633

RESUMO

Enhanced weathering (EW) aims to amplify a natural sink for CO2 by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2 into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas (GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidification in croplands and how the soil weathering CO2 sink is represented in models. Mathematical models capturing the dominant processes and human interventions governing cropland soil chemistry and GHG emissions neglect weathering, while most weathering models neglect agricultural processes. We discuss current approaches to modelling EW and highlight several classes of model having the potential to simulate EW in croplands. Finally, we argue for further integration of process knowledge in mathematical models to capture feedbacks affecting both longer-term CO2 consumption and crop growth and yields.


Assuntos
Tempo (Meteorologia) , Agricultura , Carbono , Dióxido de Carbono , Produtos Agrícolas , Solo
13.
Biochim Biophys Acta ; 1848(2): 518-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462171

RESUMO

The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are less densely bound but consist of chains able to extend further into their local environment, while the denser EPS at the late stationary phase act more to sheath the cell. Contraction and extension of the EPS could change the density of the binding sites, and therefore affect the magnitude of the adhesion force between the EPS and the silicon oxide surface. By treating rhodococcal EPS as a surface-grafted polyelectrolyte layer and using scaling theory, the interaction between EPS and a solid substrate was modelled for the cell approaching the surface which revealed that EPS possess a large capacity to store charge. Changing the pH of the surrounding medium acts to change the conformation of EPS chains.


Assuntos
Polissacarídeos Bacterianos/química , Rhodococcus/química , Dióxido de Silício/química , Aderência Bacteriana , Sítios de Ligação , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Conformação Molecular , Sondas Moleculares/química , Polilisina/química , Eletricidade Estática , Propriedades de Superfície
14.
Phys Chem Chem Phys ; 17(41): 27357-65, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26418100

RESUMO

Macromolecular binding to minerals is of great importance in the formation of biofilms, and carboxylate functional groups have been found to play a pivotal role in the functioning of these macromolecules. Here we present both fluorescence time-resolved anisotropy measurements and simulation data on the conformational behaviour and binding of a poly acrylic acid polymer. In solution the polymer exhibits a pH dependent behaviour, with a coiled conformation at a low pH and extended conformation at higher pH values. The polymer is readily adsorbed on the surface of calcite, preferring to bind in an extended conformation, with the strength of the adsorption dependent on the pH and presence of counter ions. We discuss the reasons why the calculated adsorption free energy differs from that obtained from a Langmuir isotherm analysis, showing that they refer to different quantities. The enhanced binding of the extended conformations shows the importance of flexibility in the binding of macromolecules.


Assuntos
Resinas Acrílicas/química , Carbonato de Cálcio/química , Simulação de Dinâmica Molecular , Resinas Acrílicas/síntese química , Adsorção , Concentração de Íons de Hidrogênio , Propriedades de Superfície
15.
ACS ES T Water ; 4(4): 1166-1176, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633372

RESUMO

The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.

16.
Microb Ecol ; 66(1): 84-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640275

RESUMO

Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Fenol/metabolismo , Fenóis/análise , Plâncton/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Ecossistema , Água Doce/análise , Água Doce/microbiologia , Sedimentos Geológicos/análise , Água Subterrânea/análise , Dados de Sequência Molecular , Fenol/análise , Fenóis/metabolismo , Filogenia , Plâncton/classificação , Plâncton/genética , Plâncton/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
17.
Environ Sci Technol ; 47(23): 13857-64, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24147650

RESUMO

We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in (99m)Tc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ~20 MBq (99m)Tc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min(-1). Changes in calibrated mass distribution of (99m)Tc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection-dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that (99)Tc in the pertechnetate form (Tc(VII)O4(-)) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments.


Assuntos
Sistemas Computacionais , Câmaras gama , Resíduos Radioativos/análise , Eliminação de Resíduos , Tecnécio/análise , Adsorção , Calibragem , Análise Numérica Assistida por Computador , Porosidade , Quartzo/química
18.
Nutr Bull ; 47(1): 106-114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36045085

RESUMO

This paper provides an outline of a new interdisciplinary project called FixOurFood, funded through UKRI's 'Transforming UK food systems' programme. FixOurFood aims to transform the Yorkshire food system to a regenerative food system and will work to answer two main questions: (1) What do regenerative food systems look like? (2) How can transformations be enabled so that we can achieve a regenerative food system? To answer these questions, FixOurFood will work with diverse stakeholders to change the Yorkshire food system and use the learning to inform change efforts in other parts of the UK and beyond. Our work will focus on shifting trajectories towards regenerative dynamics in three inter-related systems of: healthy eating for young children, hybrid food economies and regenerative farming. We do this by a set of action-orientated interventions in schools and the food economy, metrics, policies and deliverables that can be applied in Yorkshire and across the UK. This article introduces the FixOurFood project and concludes by assessing the potential impact of these interventions and the importance we attach to working with stakeholders in government, business, third sector and civil society.


Assuntos
Dieta Saudável , Instituições Acadêmicas , Criança , Pré-Escolar , Comércio , Alimentos , Governo , Humanos
19.
Biochim Biophys Acta ; 1798(9): 1829-39, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20529662

RESUMO

We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contribution of electrostatic and van der Waals forces, revealed that electrostatic forces are the dominant contribution to the repulsive force between the approaching colloidal probe and MA monolayers. The good agreement between data and the DLVO model suggest that beyond a few nm away from the surface, hydrophobic, hydration, and specific chemical bonding are unlikely to contribute to any significant extent to the interaction energy between the probe and the surface. The pH-dependent conformation of MA molecules in the monolayer at the solid-liquid interface was studied by ellipsometry, neutron reflectometry, and with a quartz crystal microbalance. Monolayers prepared by the Langmuir-Blodgett method demonstrated a distinct pH-responsive behaviour, while monolayers prepared by the Langmuir-Schaefer method were less sensitive to pH variation. It was found that the attachment of water molecules plays a vital role in determining the conformation of the MA monolayers.


Assuntos
Ácidos Micólicos/química , Adesividade , Coloides , Conformação Molecular , Quartzo
20.
Nat Plants ; 7(3): 250-255, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731918

RESUMO

Agriculture is a major contributor to environmental degradation and climate change. At the same time, a growing human population with changing dietary preferences is driving ever increasing demand for food. The need for urgent reform of agriculture is widely recognized and has resulted in a number of ambitious plans. However, there is credible evidence to suggest that these are unlikely to meet the twin objectives of keeping the increase in global temperature within the target of 2.0 °C above preindustrial levels set out in the Paris Agreement and delivering global food security. Here, we discuss a series of technological options to bring about change in agriculture for delivering food security and providing multiple routes to the removal of CO2 from the atmosphere. These technologies include the use of silicate amendment of soils to sequester atmospheric CO2, agronomy technologies to increase soil organic carbon, and high-yielding resource-efficient crops to deliver increased agricultural yield, thus freeing land that is less suited for intensive cropping for land use practices that will further increase carbon storage. Such alternatives include less intensive regenerative agriculture, afforestation and bioenergy crops coupled with carbon capture and storage technologies.


Assuntos
Agricultura , Mudança Climática , Segurança Alimentar , Conservação dos Recursos Naturais , Humanos , Melhoramento Vegetal , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA