Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(2): 1136-1149, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392190

RESUMO

Hypoxia is a unique environmental stress, which not only reflects the insufficient oxygen supply of cells and tissues, but also occurs in various physiological and pathological environments. Mitophagy as a selective autophagy can recover and utilize damaged organelles and misfolded proteins to ensure normal cell functions and promote cell survival. Bcl2l13 (B-cell lymphoma-2 like 13) is reported to induce mitophagy as a functional mammalian homolog of Atg32. However, the function of the bcl2l13 gene is still unclear in fish. Here the sequence and structure of the bcl2l13 gene in Megalobrama amblycephala were identified and showed that bcl2l13 contained an open reading frame (ORF) of 1458 bp for encoding 485 aa. Amino acid sequence analysis indicated that Bcl2l13, as a typical anti-apoptotic protein of the Bcl2 family, contained four BH domains, one BHNo domain, and one TM domain. Further study showed that Bcl2l13 was mainly located in the mitochondria, while its localization was changed within the whole cell after the TM domain was deleted. Real-time PCR analysis revealed that bcl2l13 showed higher expression levels in early embryos. After hypoxia treatment, the mRNA levels of the bcl2l13 and autophagy-related genes were significantly up-regulated in most detected tissues, and the bcl2l13 transcription was regulated by Hif-1α mediated pathway. Additionally, the transcription activity of the bcl2l13 promoter was further analyzed using luciferase reporter assays and showed the highest activity in the promoter region from -475 to +111. These results indicated that bcl2l13 may play important roles in embryogenesis and hypoxia mediated autophagy in fish.

2.
Biomed Microdevices ; 16(6): 859-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25119603

RESUMO

This paper presents a wireless and passive micro pressure system based on the LC mutual inductance detection mechanism for gastrointestinal (GI) pressure monitoring. The micro pressure system is composed of a sensor capsule (a pressure sensitive micro capacitive sensor in series with an induction coil to form an LC tank) and a detection unit (a detection coil connected with a network analyzer). The pressure variations under measurement lead to changes in the capacitance of the pressure sensor and therefore a shift in the LC tank resonant frequency, quantified by the impedance measurement of the detection coil. The pressure sensor was fabricated using microfabrication processes with key parameters optimized. The in vitro characterization of the micro pressure system recorded a sensitivity of 0.2491 kHz/kPa (-10 kPa to 30 kPa). One-month rabbit stomach pressure monitoring was conducted based on the developed micro pressure system as a confirmation of device long term in vivo stability. Furthermore, rabbit stomach pressure variations before and after food feeding was recorded and compared where three distinctive contraction patterns (random contraction with low amplitude, irregular strong contractions and regular contraction in a cyclic manner) following food feeding were located. Compared to previous reported GI pressure sensors, this LC tank is featured with simple device structure without batteries and electrical components for energy transfer. Both in vitro and in vivo characterization confirm the functionality of the system, which may enable the gastrointestinal motility study in the near future.


Assuntos
Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Pressão , Estômago/fisiopatologia , Tecnologia sem Fio/instrumentação , Animais , Humanos , Coelhos , Transdutores de Pressão
3.
Open Med (Wars) ; 17(1): 329-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274048

RESUMO

Background: Radiotherapy-associated secondary cancer is an important issue for the treatment of breast cancer (BCa). This study aimed to investigate the molecular mechanism and genetic risk factors for radiation-associated secondary diseases in BCa. Methods: The differentially expressed genes (DEGs) between preradiation and postradiation BCa samples in the GSE65505 dataset were obtained. The pathways related to the radiation-associated DEGs in the protein-protein interaction (PPI) network modules were identified. miRNAs targeted to the key genes in the PPI network were identified, and their association with BCa prognosis was analyzed. Results: A total of 136 radiation-associated DEGs preradiation and postradiation BCa samples were screened out. The PPI network consisted of a significant module that consisted of 21 upregulated DEGs that were associated with "hsa04512: ECM-receptor interaction," "hsa04151: PI3K-Akt signaling pathway," and "hsa04115: p53 signaling pathway." Sixteen DEGs, including three collagen genes collagen type I alpha 1 chain (COL1A1), COL3A1, and COL1A2, were enriched in 17 radiation-associated pathways. The three genes were upregulated in BCa tissues compared with controls and were also elevated by radiation. They were targeted by hsa-miR-29a/c, and the expression levels of hsa-miR-29a/c were associated with a poor prognosis of BCa. Conclusions: The upregulation of COL1A1, COL3A1, and COL1A2 might be genetic risk factors for radiation-associated secondary diseases in BCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA