Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 88(9): 4926-30, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27075757

RESUMO

In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

2.
Ultramicroscopy ; 124: 96-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142750

RESUMO

Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected. Therefore, the capacity to analyze the full tip is crucial and much desired in cases that the shell of the specimen is also the region of interest. In this paper, we demonstrate that, in the analysis of III-V nanowires epitaxially grown from a substrate, the presence of the flat substrate positioned only micrometers away from the analyzed tip apex alters the field distribution and ion trajectories, which provides extra image compression that allows for the analysis of the entire specimen. An array of experimental results, including field desorption maps, elemental distributions, and crystallographic features clearly demonstrate the fact that the whole tip has been imaged, which is confirmed by electrostatic simulations.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Simulação por Computador
3.
Ultramicroscopy ; 132: 186-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23489910

RESUMO

Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.17 nm thanks to an advanced reconstruction method exploiting the specimen's crystallography, and an enhanced chemical sensitivity of better than 8-fold increase in the signal-to-noise ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA