RESUMO
To construct an artificial intelligence system with high efficient information integration and computing capability like the human brain, it is necessary to realize the biological neurotransmission and information processing in artificial neural network (ANN), rather than a single electronic synapse as most reports. Because the power consumption of single synaptic event is â¼10 fJ in biology, designing an intelligent memristors-based 3D ANN with energy consumption lower than femtojoule-level (e.g., attojoule-level) and faster operating speed than millisecond-level makes it possible for constructing a higher energy efficient and higher speed computing system than the human brain. In this paper, a flexible 3D crossbar memristor array is presented, exhibiting the multilevel information transmission functionality with the power consumption of 4.28 aJ and the response speed of 50 ns per synaptic event. This work is a significant step toward the development of an ultrahigh efficient and ultrahigh-speed wearable 3D neuromorphic computing system.
RESUMO
The data processing efficiency of traditional computers is suffering from the intrinsic limitation of physically separated processing and memory units. Logic-in-memory and brain-inspired neuromorphic computing are promising in-memory computing paradigms for improving the computing efficiency and avoiding high power consumption caused by extra data movement. However, memristors that can conduct digital memcomputing and neuromorphic computing simultaneously are limited by the difference in the information form between digital data and analogue data. In order to solve this problem, this paper proposes a flexible low-dimensional memristor based on boron nitride (BN), which has ultralow-power non-volatile memory characteristic, reliable digital memcomputing capabilities, and integrated ultrafast neuromorphic computing capabilities in a single in situ computing system. The logic-in-memory basis, including FALSE, material implication (IMP), and NAND, are implemented successfully. The power consumption of the proposed memristor per synaptic event (198 fJ) can be as low as biology (fJ level) and the response time (1 µs) of the neuromorphic computing is four orders of magnitude shorter than that of the human brain (10 ms), paving the way for wearable ultrahigh efficient next-generation in-memory computing architectures.