Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 130: 332-341, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115605

RESUMO

Grass carp (Ctenopharyngodon idella) is the largest economic fish in freshwater culture in China, which is predisposed to infectious diseases under high temperature. Under the background of global warming, the industrialization of the Pearl River Delta region has led to aggravated thermal pollution, which has increasingly serious impacts on the aquatic ecological environment. This will result in more frequent exposure of grass carp to overheated water temperatures. Previous studies have only identified the regulatory genes of fish that respond to pathogens or temperature stress, but the transcriptional response to both is unknown. In this study, the histopathological analysis showed heat stress exacerbated spleen damage induced by Aeromonas hydrophila. The transcriptional responses of the spleens from A. hydrophila lipopolysaccharide (LPS) -injected grass carp undergoing heat stress and at normal temperatures for 6, 24, and 72 h were investigated by mRNA and microRNA sequencing. We identified 28, 20, and 141 differentially expressed (DE) miRNAs and 126, 383, and 4841 DE mRNAs between the two groups after 6, 24, and 72 h, respectively. There were 67 DE genes mainly involved in the cytochrome P450 pathway, antioxidant defense, inflammatory response, pathogen recognition pathway, antigen processing and presentation, and the ubiquitin-proteasome system. There were 5 DE miRNAs involved in regulating apoptosis and inflammation. We further verified 17 DE mRNAs and 5 DE miRNAs using quantitative real-time PCR. Based on miRNAs and mRNAs analysis, continuous heat stress will affect the antibacterial responses of grass carp spleens, resulting in aggravation of spleen injury. Together, these results provide data for further understanding of the decreased tolerance of fish to pathogen infection in persistent high-temperature environments.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , MicroRNAs , Aeromonas hydrophila/fisiologia , Animais , Antibacterianos , Antioxidantes , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes , Resposta ao Choque Térmico , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/metabolismo , Ubiquitinas , Água
2.
J Fish Biol ; 101(1): 262-268, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596622

RESUMO

This study aims to investigate the protective effects of astragaloside IV (AS-IV) on the hepatocytes of grass carp (Ctenopharyngodon idella) on heat stress. Cultured cells were treated with AS-IV (0, 50, 100 and 200 µg/ml) at 28°C for 24 h and then exposed to heat stress by increasing the culturing temperature (32 ± 0.5°C) for 6 h. The increased temperatures significantly reduced cell viability and superoxide dismutase (SOD) activity, and increased malondialdehyde (MDA) levels in the 0 µg/ml AS-IV treatment group at 32°C, but the grass carp hepatocytes treated with 100 and 200 µg/ml AS-IV had significantly increased cell viability and SOD activity and decreased MDA levels. The mRNA levels of keap1a, keap1b, nrf2, gsh-px, cat, cu-zn sod, mgst1 and il-6 were significantly lower in the 0 µg/ml AS-IV treatment group at 32°C, while those of keap1a, nrf2, gsh-px, cat, cu-zn sod, gstp1, ho-1 and il-6 were significantly higher in cells treated with 100 or 200 µg/ml AS-IV. Our findings indicate that AS-IV could enhance the antioxidative stress capacity of grass carp hepatocytes under heat stress, and its mechanism may be associated with the activation of the Keap1-Nrf2 pathway. Thus, these results provide new insights into how to alleviate heat stress in grass carp.


Assuntos
Carpas , Ração Animal/análise , Animais , Carpas/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Dieta , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Resposta ao Choque Térmico , Hepatócitos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Saponinas , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Triterpenos
3.
Biomol Ther (Seoul) ; 30(3): 246-256, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34815367

RESUMO

The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.

4.
Front Pharmacol ; 12: 738689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690775

RESUMO

Allium victorialis L. (AVL) is a traditional medicinal plant recorded in the Compendium of Materia Medica (the Ming Dynasty). In general, it is used for hemostasis, analgesia, anti-inflammation, antioxidation, and to especially facilitate hepatoprotective effect. In recent years, it has received more and more attention due to its special nutritional and medicinal value. The present study investigates the effect and potential mechanism of AVL against alcoholic liver disease (ALD). C57BL/6 mice were fed Lieber-DeCarli liquid diet containing 5% ethanol plus a single ethanol gavage (5 g/kg), and followed up with the administration of AVL or silymarin. AML12 cells were stimulated with ethanol and incubated with AVL. AVL significantly reduced serum transaminase and triglycerides in the liver and attenuated histopathological changes caused by ethanol. AVL significantly inhibited SREBP1 and its target genes, regulated lipin 1/2, increased PPARα and its target genes, and decreased PPARγ expression caused by ethanol. In addition, AVL significantly enhanced FXR, LXRs, Sirt1, and AMPK expressions compared with the EtOH group. AVL also inhibited inflammatory factors, NLRP3, and F4/80 and MPO, macrophage and neutrophil markers. In vitro, AVL significantly reduced lipid droplets, lipid metabolism enzymes, and inflammatory factors depending on FXR activation. AVL could ameliorate alcoholic steatohepatitis, lipid deposition and inflammation in ALD by targeting FXR activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA