Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37401411

RESUMO

In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/ß-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFß signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.


Assuntos
Células-Tronco Pluripotentes , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/genética , Optogenética , beta Catenina/metabolismo , Células-Tronco Embrionárias , Diferenciação Celular/genética
2.
Cells Tissues Organs ; 212(5): 439-467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599319

RESUMO

The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Células-Tronco Pluripotentes , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Imunoterapia , Neoplasias/metabolismo
3.
J Org Chem ; 88(20): 14753-14759, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822159

RESUMO

A novel cryptand-like anion receptor 1 was synthesized in reasonable yield by a one-step condensation reaction. The UV-vis spectroscopic titrations indicated that cryptand 1 bound AcO- in preference to other monovalent anions (including its competing F- and H2PO4-) in CH3CN, generating a 1:1 binding complex with Ka = 51,000 M-1. Moreover, the crystal structures revealed that the acetate ion was encapsulated inside the cryptand's cavity in a 1:1 manner, through multiple N-H···O hydrogen bonds (although having two different crystal forms).

4.
Mol Divers ; 27(3): 1243-1254, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35779170

RESUMO

A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by 1H NMR, 13C NMR, and HRMS techniques. Among them, the structures of compounds 5A10 and 5B11 were further confirmed through X-ray single-crystal diffraction analyses. The bioassay results indicated that some of the target compounds displayed higher inhibition activities in vitro against the tested phytopathogenic bacteria. For example, compound 5A26 exhibited a strong anti-Xanthomonas oryzae pv. oryzicola (Xoc) efficacy with an EC50 (half-maximal effective concentration) value of 30.6 µg/mL, over twofold more active than control agent bismerthiazol (BMT). Additionally, compound 5B14 had a good antibacterial effect against the phytopathogen Xanthomonas axonopodis pv. citric (Xac) with EC50 = 34.5 µg/mL, significantly better than control agent BMT (71.5 µg/mL). The anti-Xoc mechanistic studies showed that compound 5A26 exerted its antibacterial efficacy by increasing the permeability of bacterial membrane, decreasing the content of extracellular polysaccharides, and triggering morphological changes of bacterial cells.


Assuntos
Antibacterianos , Oxidiazóis , Testes de Sensibilidade Microbiana , Oxidiazóis/química , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacologia
5.
Mol Divers ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935911

RESUMO

A series of novel quinazolinone derivatives (E1-E31) containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker were designed, synthesized and assessed as antimicrobial agents in agriculture. All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry (HRMS). Among them, the structure of compound E12 was further confirmed via single crystal X-ray diffraction method. The experimental results indicated that many compounds displayed good in vitro antibacterial efficacies against the tested phytopathogenic bacteria including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum (Rs). For example, compounds E3, E4, E10, E13, and E22 had EC50 (half-maximal effective concentration) values of 55.4, 39.5, 49.5, 53.5, and 57.4 µg/mL against Xoo, respectively, superior to the commercialized bactericide Bismerthiazol (94.5 µg/mL). In addition, the antibacterial efficacies of compounds E10 and E13 against Xac were about two times more effective than control Bismerthiazol, in terms of their EC50 values. Last, the antifungal assays showed that compounds E22 and E30 had the inhibition rates of 52.7% and 54.6% at 50 µg/mL against Gibberella zeae, respectively, higher than the commercialized fungicide Hymexazol (48.4%).

6.
Mol Divers ; 25(2): 711-722, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32006295

RESUMO

A series of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolin-4(3H)-one derivatives (8a-8o) were designed, synthesized and assessed for their in vitro antibacterial and antifungal activities in agriculture. All the title compounds were completely characterized via 1H NMR, 13C NMR, HRMS and IR spectroscopic data. In particular, the molecular structure of compound 8f was further corroborated through a single-crystal X-ray diffraction measurement. The turbidimetric method revealed that some of the compounds displayed noticeable bactericidal potencies against the tested plant pathogenic bacteria. For example, compounds 8m, 8n and 8o possessed higher antibacterial efficacies in vitro against Xanthomonas oryzae pv. oryzae with EC50 values of 69.0, 53.3 and 58.9 µg/mL, respectively, as compared with commercialized agrobactericide bismerthiazol (EC50 = 91.4 µg/mL). Additionally, compound 8m displayed an EC50 value of 71.5 µg/mL toward Xanthomonas axonopodis pv. citri, comparable to control bismerthiazol (EC50 = 60.5 µg/mL). A preliminary structure-activity relationship (SAR) analysis was also conducted, based on the antibacterial results. Finally, some compounds were also found to have a certain antifungal efficacy in vitro at the concentration of 50 µg/mL.


Assuntos
Antibacterianos , Antifúngicos , Pirimidinas , Quinazolinonas , Triazóis , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Desenho de Fármacos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Quinazolinonas/síntese química , Quinazolinonas/química , Quinazolinonas/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/crescimento & desenvolvimento , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia , Xanthomonas/efeitos dos fármacos , Xanthomonas/crescimento & desenvolvimento
7.
Stem Cells ; 37(12): 1556-1566, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634414

RESUMO

Transcription factors (TFs) are potent proteins that control gene expression and can thereby drive cell fate decisions. Fluorescent reporters have been broadly knocked into endogenous TF loci to investigate the biological roles of these factors; however, the sensitivity of such analyses in human pluripotent stem cells (hPSCs) is often compromised by low TF expression levels and/or reporter silencing. Complementarily, we report an inducible and quantitative reporter platform based on the Cre-LoxP recombination system that enables robust, quantifiable, and continuous monitoring of live hPSCs and their progeny to investigate the roles of TFs during human development and disease. Stem Cells 2019;37:1556-1566.


Assuntos
Linhagem da Célula/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Células-Tronco Pluripotentes/citologia , Proteínas WT1/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Edição de Genes/métodos , Técnicas de Introdução de Genes , Marcação de Genes , Humanos , Fatores de Transcrição/metabolismo
8.
Biotechnol Bioeng ; 117(7): 2177-2186, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277708

RESUMO

Proper cell-cycle progression is essential for the self-renewal and differentiation of human pluripotent stem cells (hPSCs). The fluorescent ubiquitination-based cell-cycle indicator (FUCCI) has allowed the dual-color visualization of the G1 and S/G2 /M phases in various dynamic models, but its application in hPSCs is not widely reported. In addition, lineage-specific FUCCI reporters have not yet been developed to analyze complex tissue-specific cell-cycle progression during hPSC differentiation. Desiring a robust tool for spatiotemporal reporting of cell-cycle events in hPSCs, we employed the CRISPR/Cas9 genome editing tool and successfully knocked the FUCCI reporter into the AAVS1 safe harbor locus of hPSCs for stable and constitutive FUCCI expression, exhibiting reliable cell-cycle-dependent fluorescence in both hPSCs and their differentiated progeny. We also established a cardiac-specific TNNT2-FUCCI reporter for lineage-specific cell-cycle monitoring of cardiomyocyte differentiation from hPSCs. This powerful and modular FUCCI system should provide numerous opportunities for studying human cell-cycle activity, and enable the identification and investigation of novel regulators for adult tissue regeneration.


Assuntos
Ciclo Celular , Células-Tronco Pluripotentes/citologia , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Genes Reporter , Humanos , Microscopia de Fluorescência , Células-Tronco Pluripotentes/metabolismo , Ubiquitinação
9.
Proc Natl Acad Sci U S A ; 114(7): 1649-1654, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143939

RESUMO

The secreted Wnt signaling molecules are essential to the coordination of cell-fate decision making in multicellular organisms. In adult animals, the secreted Wnt proteins are critical for tissue regeneration and frequently contribute to cancer. Small molecules that disable the Wnt acyltransferase Porcupine (Porcn) are candidate anticancer agents in clinical testing. Here we have systematically assessed the effects of the Porcn inhibitor (WNT-974) on the regeneration of several tissue types to identify potentially unwanted chemical effects that could limit the therapeutic utility of such agents. An unanticipated observation from these studies is proregenerative responses in heart muscle induced by systemic chemical suppression of Wnt signaling. Using in vitro cultures of several cell types found in the heart, we delineate the Wnt signaling apparatus supporting an antiregenerative transcriptional program that includes a subunit of the nonfibrillar collagen VI. Similar to observations seen in animals exposed to WNT-974, deletion of the collagen VI subunit, COL6A1, has been shown to decrease aberrant remodeling and fibrosis in infarcted heart tissue. We demonstrate that WNT-974 can improve the recovery of heart function after left anterior descending coronary artery ligation by mitigating adverse remodeling of infarcted tissue. Injured heart tissue exposed to WNT-974 exhibits decreased scarring and reduced Col6 production. Our findings support the development of Porcn inhibitors as antifibrotic agents that could be exploited to promote heart repair following injury.


Assuntos
Aciltransferases/antagonistas & inibidores , Remodelamento Atrial/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Remodelamento Atrial/genética , Células Cultivadas , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Inibidores Enzimáticos/química , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Estrutura Molecular , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Pirazinas/química , Pirazinas/farmacologia , Piridinas/química , Piridinas/farmacologia , Regeneração/efeitos dos fármacos , Regeneração/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
10.
Mol Divers ; 23(3): 615-624, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30511268

RESUMO

A total of eighteen 2-((2-(4-(1H-1,2,4-triazol-1-yl)phenyl)quinazolin-4-yl)oxy)-N-phenylacetamide derivatives were designed and synthesized, via hybrid pharmacophore approach. Among these compounds, chemical structure of compound 4a was unambiguously confirmed by means of single-crystal X-ray diffraction analysis. All the compounds were evaluated in vitro for their inhibition activity against several important phytopathogenic bacteria and fungi in agriculture. The obtained results indicated that several compounds demonstrated potent antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo). For example, compounds 4c, 4g and 4q had EC50 values of 35.0, 36.5 and 32.4 µg/mL toward this bacterium, respectively, around 1.5 times more active than commercial bactericide bismerthiazol (EC50 = 89.8 µg/mL). Additionally, compounds 4j and 4p were found to display comparable antifungal activity against Gloeosporium fructigenum at 50 µg/mL, to commercial fungicide hymexazol. Finally, the relationships between antibacterial activities and molecular structures of this class of compounds were discussed in detail.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Plantas/microbiologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Antibacterianos/química , Antifúngicos/química , Técnicas de Química Sintética , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Quinazolinas/química , Relação Estrutura-Atividade
11.
Mol Divers ; 22(3): 657-667, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29574502

RESUMO

A series of structurally novel 3-thioether-1-(quinazolin-4-yl)-1H-1,2,4-triazol-5-amine derivatives (7a-7r) were designed and synthesized based on a pharmacophore hybrid approach, and screened for their antibacterial and antifungal activities in vitro. All the target compounds were fully characterized through [Formula: see text]H NMR, [Formula: see text]C NMR and HRMS spectra. Among them, the structure of compound 7b was further confirmed via single-crystal X-ray diffraction analysis. The obtained results indicated that several target compounds demonstrated notable inhibition activities against tested phytopathogenic bacteria, using a turbidimetric method. For example, compounds 7d, 7g and 7i exhibited EC[Formula: see text] (half-maximal effective concentration) values of 46.9, 47.8 and 43.2 µg/mL, respectively, against the bacterium Xanthomonas axonopodis pv. citri (Xac), which were more potent than commercial agrobactericide Bismerthiazol (56.9 µg/mL). Moreover, EC[Formula: see text] values of compounds 7a and 7h were found to be 81.6 and 93.1 µg/mL, respectively, against the bacterium Ralstonia solanacearum (Rs), being over twofold more active than commercial agrobactericide Thiodiazole-copper (189.6 µg/mL). Finally, some compounds displayed a certain degree of inhibition activity against tested phytopathogenic fungi at 50 µg/mL.


Assuntos
Antibacterianos , Antifúngicos , Quinazolinas , Sulfetos , Triazóis , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Quinazolinas/química , Quinazolinas/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Triazóis/química , Triazóis/farmacologia , Xanthomonas/efeitos dos fármacos
12.
Mol Divers ; 22(1): 1-10, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28879615

RESUMO

A series of novel quinazolin-4-one derivatives (7a-7n) bearing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety were designed, synthesized and evaluated for their inhibition activities against phytopathogenic bacteria and fungi in vitro. All of the target compounds were fully characterized through [Formula: see text] NMR, [Formula: see text] NMR, HRMS and IR spectra. Among these compounds, the structure of compound 7e was unambiguously confirmed via single-crystal X-ray diffraction analysis. The turbidimetric assays indicated that compounds 7b, 7d, 7g, 7k and 7n exhibited much more potent inhibition activities against the pathogen Xanthomonas oryzae pv. oryzae (Xoo), relative to control Bismerthiazol. Moreover, antibacterial activities of compounds 7j, 7k and 7n against the pathogen Xanthomonas axonopodis pv. citri (Xac) were comparable to that of control Bismerthiazol. As for the pathogen Ralstonia solanacearum (Rs), only compounds 7g and 7i demonstrated inhibition activities similar to control Thiadiazole-copper. Moreover, this class of compounds did not display inhibition activity against three fungi tested. The above findings indicated that quinazolin-4-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety have a potential as promising candidates for the development of new and more efficient agricultural bactericides.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Xanthomonas/efeitos dos fármacos , Antibacterianos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Relação Estrutura-Atividade , Difração de Raios X
13.
Mol Divers ; 22(1): 71-82, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29119421

RESUMO

A series of novel (E)-2-(4-(1H-1,2,4-triazol-1-yl)styryl)-4-(alkyl/arylmethyleneoxy)quinazoline derivatives (4a-4s) were synthesized in good to excellent yields, and their structures were fully characterized by [Formula: see text] NMR, [Formula: see text] NMR, HRMS and IR spectra. The structure of compound 4b was further confirmed via single-crystal X-ray diffraction analysis. The bioassay results indicated that compounds 4s, 4q and 4n inhibit phytopathogenic bacterium Xanthomonas axonopodis pv. citri (Xac) more potently than commercial bactericide bismerthiazol. However, not a single compound can effectively inhibit three pathogenic fungi tested at 50 [Formula: see text].


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Técnicas de Química Sintética , Quinazolinas/síntese química , Quinazolinas/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Cristalografia por Raios X , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinazolinas/química
14.
Elife ; 132024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813866

RESUMO

A new protocol can customize the flavor of lab-grown meat by controlling the level of fat deposited between muscle cells.


Assuntos
Carne , Paladar , Paladar/fisiologia , Animais , Carne in vitro
15.
Stem Cell Reports ; 19(5): 744-757, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38579711

RESUMO

Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.


Assuntos
Linhagem da Célula , Técnicas de Introdução de Genes , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Linhagem da Célula/genética , Técnicas de Introdução de Genes/métodos , Genes Reporter , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Linhagem Celular , Edição de Genes/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Pest Manag Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899477

RESUMO

BACKGROUND: To discover more efficient agricultural antimicrobial agents, a series of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety were prepared and assessed for their antibacterial and antifungal activities. RESULTS: All the target compounds were characterized by 1H and 13C NMR as well as high-resolution mass spectrometry (HRMS), and the chemical structure of the most potent compound E19 incorporating a 4-trifluoromethoxy substituent was clearly confirmed via single crystal X-ray diffraction measurements. The bioassay results indicated that some compounds possessed notable inhibitory effects in vitro against the bacterium Xanthomonas oryzae pv. oryzicola (Xoc). For example, compound E19 had an EC50 (effective concentration for 50% activity) value of 7.1 µg/mL towards this pathogen, approximately 15- and 10-fold more effective than the commercial bactericides thiodiazole copper and bismerthiazol (EC50 = 110.2 and 72.4 µg/mL, respectively). Subsequently, the mechanistic studies showed that compound E19 likely exerted its antibacterial efficacies by altering the cell morphology, increasing the permeability of bacterial cytoplasmic membrane, suppressing the production of bacterial extracellular polysaccharides and the extracellular enzyme activities (amylase and cellulase), and blocking the swimming motility of Xoc. Moreover, the proteomic analysis revealed that compound E19 could reduce the bacterial flagellar biosynthesis and decrease the flagellar motility by down-regulating the expression of the related differential proteins. CONCLUSION: Compound E19 exhibited good potential for further development as a bactericide candidate for control of Xoc. © 2024 Society of Chemical Industry.

17.
Stem Cell Reports ; 19(4): 579-595, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518781

RESUMO

Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.


Assuntos
Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Células-Tronco Pluripotentes , Fatores de Transcrição SOXF , Humanos , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
18.
Front Microbiol ; 15: 1358085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716171

RESUMO

The objective of this experiment was to investigate the effects of Lactobacillus plantarum and molasses on the nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora of alfalfa silage in sandy grasslands. The experimental treatments included control (CK), 106 CFU/g Lactobacillus plantarum (L), 5% molasses (M), and 106 CFU/g Lactobacillus plantarum + 5% molasses (LM). The nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora were determined after 14 days and 56 days of ensiling, respectively. The results showed that the addition of L, M, and LM reduced dry matter loss (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and increased water-soluble carbohydrates (WSC) and ether extract (EE) content, compared to the CK group. Meanwhile, more lactic acid (LA) and accelerated fermentation were observed, causing the pH value to drop below 4.5 in the L, M, and LM groups after 56 days of ensiling. The addition of L, M, and LM promoted lactic acid bacteria (LAB), and inhibited yeast. The addition of L significantly increased the content of acetic acid (AA). In terms of microflora, the addition of L, M, and LM made Firmicutes become the dominant bacterial phylum earlier, while Lactobacillus, Weissella, and Pediococcus had a higher abundance. According to the result of Pearson's correlation, there is a very significant negative correlation between pH value and Lactobacillus (P < 0.01) and a very significant positive correlation between pH value and Lactococcus, Enterobacter, Enterococcus, and Leuconostoc (P < 0.01), which may be inhibited by Lactobacillus under the decreased pH value. The results of the prediction of microbial genes indicated that the addition of M could enhance the carbohydrate metabolism and membrane transport metabolism, which may contribute to LA production by LAB metabolism. In general, L, M and LM all improved the fermentation quality and reduced the loss of nutrients to varying degrees, but considering the fermentation quality, the overall effects of M and LM were better than L. M and LM are recommended to be used as silage additives in the process of alfalfa silage in sandy grasslands to improve the quality.

20.
J Surg Res ; 185(1): 373-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23810746

RESUMO

BACKGROUND: Cell proliferation, renewal, and apoptosis factors are related to hemorrhagic shock (HS) survival. OBJECTIVE: Hepatic gene expression before and 24 h after induced HS were compared. METHODS: Male Sprague-Dawley rats aged 8-9 wk (n = 11) were subjected to blood loss, and HS was induced in 9 rats (blood loss <0.1 mL) by left lobular hepatectomy with fixed-volume blood loss (2.5 mL/100 g) for this self-controlled study. In 3 randomly selected rats surviving >24 h post-HS, hepatic tissue samples collected pre-HS (n = 3; group A) and 24 h post-HS (n = 3; group B) were used for microarray analysis (21,793 genes) of differentially expressed genes using pathway, gene ontology, and network analyses. Real-time reverse transcriptase polymerase chain reaction confirmed Aldh1a1, Aldh1a7, amine oxidase, copper containing 3, cytochrome P450 26A1, histidine decarboxylase 1, and epoxide hydrolase 2 expression using a beta-actin reference. RESULTS: Four rats survived 24 h after HS. Microarray revealed 562 upregulated and 634 downregulated genes in group A compared with group B. Gene ontology analysis revealed differentially expressed genes involved in cholesterol metabolic processes, extracellular stimuli response, sterol metabolic processes, hormonal stimuli response, steroid metabolic processes, endogenous stimulus response, oxidation and reduction reactions, organic substance response, and fatty acid metabolic processes. CONCLUSIONS: HS pathogenesis involves numerous interrelated signaling pathways. Redox reaction and fatty acid metabolism pathway involvement in traumatic HS recovery, as well as other pathways, may provide novel targets for better understanding the pathology of HS and developing treatments to limit post-HS organ failure.


Assuntos
Fígado/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Choque Hemorrágico/genética , Choque Hemorrágico/mortalidade , Transcriptoma , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Hepatectomia , Hepatócitos/fisiologia , Fígado/citologia , Fígado/cirurgia , Masculino , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Ferimentos e Lesões/genética , Ferimentos e Lesões/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA